74340

Особенности моделирования воздушных линий электропередачи со стальными проводами

Доклад

Энергетика

Особенности моделирования воздушных линий электропередачи со стальными проводами. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия широкие реки горные ущелья и т.

Русский

2014-12-30

116.5 KB

4 чел.

29. Особенности моделирования воздушных линий электропередачи со стальными проводами.

Основное достоинство стальных проводов — их высокие механические свойства. В частности, временное сопротивление на разрыв стальных проводов достигает 600—700 МПа (60—70 кг/мм2) и более. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия (широкие реки, горные ущелья и т. п.).Сталь обладает значительно более высоким электрическим сопротивлением (удельное сопротивление ρ достигает величины 130 Ом·мм2/км) по сравнению с медью и алюминием, которое зависит от сорта стали, способа изготовления провода и от величины тока, протекающего по проводу. Поэтому передача больших мощностей на значительные расстояния затруднена вследствие больших потерь напряжения и электроэнергии.

Сталь — это ферромагнитный материал, и поэтому стальные провода обладают большой внутренней индуктивностью. Активные сопротивления стальных проводов, так же как и реактивные, зависят от величины протекающего в них тока. При токах, близких к нулю, когда магнитный поток в проводе очень мал, активное и омическое сопротивления проводов практически одинаковы. потери активной мощности учитывают соответствующими составляющими активного сопротивления стальных проводов:

где R'o— сопротивление постоянному току (омическое),

Сталь обладает большей магнитной проницаемостью (μ> 1), чем цветные металлы (медь и алюминий). Активное сопротивление переменному току ЛЭП со стальными проводами выше активного сопротивления ЛЭП того же сечения из меди или алюминия. Величина дополнительных потерь зависит от магнитного потока Ф в сечении провода, а магнитный поток определяется магнитной проницаемостью материала провода р. и напряженностью магнитного поля Н: Ф = BF = μHF,

где В — магнитная индукция, a F — площадь поперечного сечения провода.

Активное сопротивление стальных проводов зависит от многих факторов (химического состава стали, токовой нагрузки и др.), является очень сложной функцией и его трудно выразить математической формулой. Для определения активных сопротивлений стальных проводов используют табличные данные (прил. 1, табл. П 1.7, П 1.8), составленные на основании измерений для разных марок и сечений проводов в зависимости от величины тока.

Индуктивное сопротивление стального провода также определяется двумя составляющими: внешним индуктивным сопротивлением  и внутренним индуктивным сопротивлением, Ом/км:

Внешнее индуктивное сопротивление, Ом/км, обусловлено внешним магнитным потоком, зависит от геометрических размеров линии и рассчитывается по формуле

Рис.2.8. Активные (1) и индуктивные (2) сопротивления стальных проводов;

сопротивление постоянному току (3) и индуктивное сопротивление алюминиевых проводов (4)

Внутреннее индуктивное сопротивление обусловлено магнитным потоком, замыкающимся внутри провода, и определяется магнитной проницаемостью, которая, в свою очередь, зависит не только от конструкции и химического состава стали провода, но и от тока, протекающего в проводе:

Внутреннее индуктивное сопротивление стальных проводов по своей величине значительно превышает внешнее индуктивное сопротивление и значительно больше, чем у проводов из цветных металлов. У линии передачи с проводами из цветного металла индуктивное сопротивление в основном обусловлено внешним магнитным потоком. Например, у трехфазной линии с проводами А 50 при среднегеометрическом расстоянии между ними Dcp=l,5 м доля внутреннего индуктивного сопротивления Х'о в полном Хо составляет всего 4,1 %. Для ВЛ со стальными проводами ПМС 50 при токе 25 А она составляет 58 %, т. е. в 14 раз больше.

На рис. 1.8 показаны для провода ПС 25 кривые изменения активного (кривая 1) и реактивного (кривая 2) сопротивлений в зависимости от величины переменного тока. Для сравнения слабовыраженная кривая 3 показывает изменение сопротивления провода постоянному току, а прямая 4 — индуктивного сопротивления для алюминиевых проводов. Активные и реактивные сопротивления однопроволочного провода быстро растут с увеличением его диаметра. Поэтому в электрических сетях однопроволочные провода применяют с диаметром не более 5 мм. Провода с сечением 25 мм и выше выполняют многопроволочными.

Многопроволочные провода имеют значительно лучшие электрические характеристики, чем однопроволочные, и почти не зависящие от сечения провода. В многопроволочных проводах, благодаря воздушным промежуткам между отдельными проволоками, из которых свит провод, сопротивление магнитному потоку резко возрастает. Магнитный поток внутри провода уменьшается — уменьшаются активное и реактивное сопротивления провода [11]. В целом удельные активное и реактивное сопротивления стальных проводов в несколько раз превышают аналогичные величины проводов из цветного металла. Это означает, что в таких ЛЭП с увеличением тока нагрузки увеличивается сопротивление стального провода, значительно выше потери напряжения и, соответственно, снижается пропускная способность электропередачи. Вследствие этих причин применение стальных проводов ограничено.


 

А также другие работы, которые могут Вас заинтересовать

26641. Вертикальная зональность океана 158 KB
  Общепринятой во всех странах схемы вертикальных зон океана к сожалению пока не существует. Кроме того в некоторых частях Мирового океана различают также: псевдобатиаль фауну внутришельфовых депрессий от 250400 до 1200 м отделенных более или менее мелководными порогами обычно менее 200 м от собственно батиальной зоны примеры: фауна более или менее изолированных глубинных котловин норвежских фьордов и района Магелланова пролива Белого и Балтийского морей южной Аляски антарктического шельфа; псевдоабиссаль фауну обширных...
26642. Круговорот веществ в биосфере 88 KB
  Биогеохимические круговороты. Круговорот веществ в биосфере. Круговорот углерода. Круговорот кислорода.
26643. КУЛЬТУРНЫЙ ЛАНДШАФТ 27 KB
  Ландшафт культурный географический ландшафт измененный хозяйственной деятельностью человеческого общества и насыщенный результатами его труда. и природным ландшафтом нет резкой грани: в Л. основывается на познании связей как между компонентами ландшафта так и между его морфологическими составными частями урочищами фациями и предусматривает достижение максимального воспроизводства естественных в первую очередь биологических ресурсов предотвращение неблагоприятных природных процессов создание здоровой среды для жизни человека...
26644. Ландша́фт 38.5 KB
  Landschaft вид местности от Land земля и schaft суффикс выражающий взаимосвязь взаимозависимость понятие употребляющееся в разных но связанных между собою значениях в географии ландшафтной экологии живописи ландшафтной архитектуре компьютерной графике и т. История понятия Пример ландшафтной живописи Питер Брейгель. Впервые слово ландшафт прозвучало в IX веке в трудах монахов Фульдского монастыря в Германии. Ландшафт укладывается в рамки административнотерриториального и административного понятия.
26646. Ноосфе́ра 25 KB
  Ноосфера новая высшая стадия эволюции биосферы становление которой связано с развитием человеческого общества оказывающего глубокое воздействие на природные процессы. Ноосфера как наука изучает закономерности возникновения существования и развития человека человеческого общества закономерности взаимоотношения человека с биосферой. В окружающем нас мире ноосфера является той частью биосферы которую занимает человек Возникновение и развитие ноосферы В ноосферном учении Человек предстаёт укоренённым в Природу а искусственное...
26647. Основные законы (особенности, признаки) географической оболочки 74.5 KB
  Например пятна на Солнце увеличивают площадь в течение 914 лет а средний цикл солнечной активности 9 14 : 2 = 112 лет. Внутривековые циклы движение Земли в Солнечной системе влажные и прохладные 3540 лет чередуются с тёплыми и сухими колебания водности озёр ритмы солнечной активности 11 3540 90100 лет. Сверхвековые циклы движение Солнечной системы в Галактике образует галактические ритмы длящиеся миллионы лет. лет.
26648. Будыко Михаил Иванович 42 KB
  ЛАНДШАФТНАЯ ЗОНАЛЬНОСТЬ ГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ ШИРОТНАЯ ЗОНАЛЬНОСТЬ одна из основных географических закономерностей выражающаяся в последовательной географически обусловленной смене типов природных комплексов ландшафтов геосистем экосистем и компонентов природной среды климат четвертичные отложения коры выветривания почвы растительность животный мир поверхностные и подземные воды по широтному градиенту. Их отношение становится основным фактором возникновения природных зон. Сложный характер циркуляции воздушных масс и...
26649. Геосистема 23.5 KB
  Геосистема безразмерная единица географической структуры геосистема наивысшего ранга географическая оболочка и в этом смысле близка к термину экосистемы но последняя обязательно с акцентом на биоту. Термин геосистема очень близок понятию природного территориального комплекса. Экосистема широкое понятие и в этом смысле близко к понятиям комплекс природный1 геосистема но более биологично по существу поскольку центральной концепцией экосистемы является представление о цепях питания и трофических уровнях.