74340

Особенности моделирования воздушных линий электропередачи со стальными проводами

Доклад

Энергетика

Особенности моделирования воздушных линий электропередачи со стальными проводами. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия широкие реки горные ущелья и т.

Русский

2014-12-30

116.5 KB

2 чел.

29. Особенности моделирования воздушных линий электропередачи со стальными проводами.

Основное достоинство стальных проводов — их высокие механические свойства. В частности, временное сопротивление на разрыв стальных проводов достигает 600—700 МПа (60—70 кг/мм2) и более. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия (широкие реки, горные ущелья и т. п.).Сталь обладает значительно более высоким электрическим сопротивлением (удельное сопротивление ρ достигает величины 130 Ом·мм2/км) по сравнению с медью и алюминием, которое зависит от сорта стали, способа изготовления провода и от величины тока, протекающего по проводу. Поэтому передача больших мощностей на значительные расстояния затруднена вследствие больших потерь напряжения и электроэнергии.

Сталь — это ферромагнитный материал, и поэтому стальные провода обладают большой внутренней индуктивностью. Активные сопротивления стальных проводов, так же как и реактивные, зависят от величины протекающего в них тока. При токах, близких к нулю, когда магнитный поток в проводе очень мал, активное и омическое сопротивления проводов практически одинаковы. потери активной мощности учитывают соответствующими составляющими активного сопротивления стальных проводов:

где R'o— сопротивление постоянному току (омическое),

Сталь обладает большей магнитной проницаемостью (μ> 1), чем цветные металлы (медь и алюминий). Активное сопротивление переменному току ЛЭП со стальными проводами выше активного сопротивления ЛЭП того же сечения из меди или алюминия. Величина дополнительных потерь зависит от магнитного потока Ф в сечении провода, а магнитный поток определяется магнитной проницаемостью материала провода р. и напряженностью магнитного поля Н: Ф = BF = μHF,

где В — магнитная индукция, a F — площадь поперечного сечения провода.

Активное сопротивление стальных проводов зависит от многих факторов (химического состава стали, токовой нагрузки и др.), является очень сложной функцией и его трудно выразить математической формулой. Для определения активных сопротивлений стальных проводов используют табличные данные (прил. 1, табл. П 1.7, П 1.8), составленные на основании измерений для разных марок и сечений проводов в зависимости от величины тока.

Индуктивное сопротивление стального провода также определяется двумя составляющими: внешним индуктивным сопротивлением  и внутренним индуктивным сопротивлением, Ом/км:

Внешнее индуктивное сопротивление, Ом/км, обусловлено внешним магнитным потоком, зависит от геометрических размеров линии и рассчитывается по формуле

Рис.2.8. Активные (1) и индуктивные (2) сопротивления стальных проводов;

сопротивление постоянному току (3) и индуктивное сопротивление алюминиевых проводов (4)

Внутреннее индуктивное сопротивление обусловлено магнитным потоком, замыкающимся внутри провода, и определяется магнитной проницаемостью, которая, в свою очередь, зависит не только от конструкции и химического состава стали провода, но и от тока, протекающего в проводе:

Внутреннее индуктивное сопротивление стальных проводов по своей величине значительно превышает внешнее индуктивное сопротивление и значительно больше, чем у проводов из цветных металлов. У линии передачи с проводами из цветного металла индуктивное сопротивление в основном обусловлено внешним магнитным потоком. Например, у трехфазной линии с проводами А 50 при среднегеометрическом расстоянии между ними Dcp=l,5 м доля внутреннего индуктивного сопротивления Х'о в полном Хо составляет всего 4,1 %. Для ВЛ со стальными проводами ПМС 50 при токе 25 А она составляет 58 %, т. е. в 14 раз больше.

На рис. 1.8 показаны для провода ПС 25 кривые изменения активного (кривая 1) и реактивного (кривая 2) сопротивлений в зависимости от величины переменного тока. Для сравнения слабовыраженная кривая 3 показывает изменение сопротивления провода постоянному току, а прямая 4 — индуктивного сопротивления для алюминиевых проводов. Активные и реактивные сопротивления однопроволочного провода быстро растут с увеличением его диаметра. Поэтому в электрических сетях однопроволочные провода применяют с диаметром не более 5 мм. Провода с сечением 25 мм и выше выполняют многопроволочными.

Многопроволочные провода имеют значительно лучшие электрические характеристики, чем однопроволочные, и почти не зависящие от сечения провода. В многопроволочных проводах, благодаря воздушным промежуткам между отдельными проволоками, из которых свит провод, сопротивление магнитному потоку резко возрастает. Магнитный поток внутри провода уменьшается — уменьшаются активное и реактивное сопротивления провода [11]. В целом удельные активное и реактивное сопротивления стальных проводов в несколько раз превышают аналогичные величины проводов из цветного металла. Это означает, что в таких ЛЭП с увеличением тока нагрузки увеличивается сопротивление стального провода, значительно выше потери напряжения и, соответственно, снижается пропускная способность электропередачи. Вследствие этих причин применение стальных проводов ограничено.


 

А также другие работы, которые могут Вас заинтересовать

4571. Разработка учебная Базы Данных (БД) MusicShop 696 KB
  Введение В настоящие время в связи с развитием компьютерной техники появилась возможность автоматизировать многие процессы. Современные магазины музыки предлагают большой выбор музыки, в связи с чем, возникает проблема поиска необходимой композиции,...
4572. Решение задачи коммивояжера разными программными методами 84.06 KB
  Введение Комбинаторика – раздел математики, посвящённый решению задач выбора и расположения элементов некоторого, обычно конечного множества в соответствии с заданными правилами. Каждое такое правило определяет способ построения некоторой конст...
4573. Кратчайший путь в графе. Методы программирования 151 KB
  Программный продукт предназначен для нахождения кратчайшего пути между двумя любыми вершинами графа. Проектирование Алгоритм Дейкстры. Алгоритм Дейкстры строит кратчайшие пути, ведущие из исходной вершины графа к остальным вершинам этог...
4574. Инструментальная система моделирования Parallax 74 KB
  Общие характеристики системы Инструментальная система моделирования Parallax (далее — система) предназначена для моделирования и анализа система взаимодействующих параллельных процессов на основе аппарата PS-сетей. Система...
4575. Раскраска графа способом разработки программного продукта 403.33 KB
  Родоначальником теории графов считается Леонард Эйлер. В 1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кенигсбергских мостах, ставшей впоследствии одной из классических задач теории графов. Впервые...
4576. Создание программы для рисования кривых второго порядка в среде Borland C++ Builder 6 437 KB
  Введение В рамках данного курсового проекта требуется написать программу, рисующую кривые второго порядка. Для разработки была использована среда разработки BorlandC++ Builder 6. Формулировка поставленной задачи Написать программу, рисующую кр...
4577. Покрывающее дерево. Концепция алгоритма Краскала 252.41 KB
  Алгоритм Краскала может строить дерево одновременно для нескольких компонент связности, которые в процессе решения объединяются в одно связанное дерево. Полный граф задается списком ребер. Перед работой список ребер сортируется по возрастанию длины....
4578. Философия человека 185 KB
  Философия человека Понятие философской антропологии. Проблема человека в истории философии. Проблема определения сущности человека. Философские проблемы антропосоциогенеза. Смысл и ценность жизни человека. Введение. С развитием общества ...
4579. Визначення максимальної енергії бета-частинок у спектрі 78 KB
  Визначення максимальної енергіїбета-частинок у спектрі Мета роботи: визначення максимальної енергії бета-частинок в спектрі. Короткі теоретичні відомості Бета-розпад — це самовільний процес, в якому нестабільне ядро перетворюєтьс...