74344

ОБЩАЯ ХАРАКТЕРИСТИКА ЗАДАЧИ РАСЧЕТА И АНАЛИЗА УСТАНОВИВШИХСЯ РЕЖИМОВ. ЦЕЛЬ РАСЧЕТОВ. ОСНОВНЫЕ ДОПУЩЕНИЯ ПРИ РАСЧЕТЕ РЕЖИМОВ

Доклад

Энергетика

Естественно такая электрическая цепь обязательно включает в себя ИП и ЭП как составные части и в едином смысле понятие электрической сети формально совпадает с понятием ЭЭС как электрической цепи. При решении ряда задач эксплуатации развития и проектирования электрических сетей необходимо оценить условия в которых будут работать потребители и оборудование электрической сети. Также эти оценки дают возможность установить допустимость анализируемого режима при передаче по сети данных мощностей при подключении новых и отключении...

Русский

2014-12-30

95.5 KB

19 чел.

50. ОБЩАЯ ХАРАКТЕРИСТИКА ЗАДАЧИ РАСЧЕТА И АНАЛИЗА УСТАНОВИВШИХСЯ РЕЖИМОВ. ЦЕЛЬ РАСЧЕТОВ. ОСНОВНЫЕ ДОПУЩЕНИЯ ПРИ РАСЧЕТЕ РЕЖИМОВ. Передача электроэнергии от электростанций к потребителям осуществляется по электрическим сетям. В теории и практике электроэнергетических (электрических) систем (ЭЭС) термин «электрическая сеть», с одной стороны, соответствует понятию подсистемы ЭЭС, предназначенной для передачи и распределения электроэнергии, как совокупности ЛЭП и подстанций, соединяющих между собой источники питания (ИП) и электропотребители (ЭП). С другой стороны, это электрическая цепь, соответствующая данной подсистеме. Естественно, такая электрическая цепь обязательно включает в себя ИП и ЭП как составные части, и в едином смысле понятие электрической сети формально совпадает с понятием ЭЭС как электрической цепи. В зависимости от величины мощности и вида электропотребителей, удаленности их от электростанций, передача и распределение электроэнергии осуществляется по сетям различных номинальных напряжений и конфигураций.

При решении ряда задач эксплуатации, развития и проектирования электрических сетей необходимо оценить условия, в которых будут работать потребители и оборудование электрической сети. Также эти оценки дают возможность установить допустимость анализируемого режима при передаче по сети данных мощностей, при подключении новых и отключении действующих элементов сети (ЛЭП, трансформаторов, нагрузок и т. д.). Кроме того, расчеты, выполняемые при такого рода оценках, дают возможность предусмотреть меры для обеспечения требуемого качества электроэнергии и определить условия для оптимизации производства, передачи и распределения электроэнергии.

Плановые и аварийные изменения нагрузок, состава и конфигурации схемы электрической сети приводят к изменению ее электрического режима. Определение параметров рабочего установившегося режима (состояния электрического равновесия) электрической сети (тока и потокораспределения, напряжений и потерь мощности в сети) составляет задачу расчета режима или, как иногда условно говорят, задачу «электрического расчета» сети.

Расчет и анализ параметров установившихся режимов составляют основную задачу при проектировании ЭЭС с учетом надежности эксплуатации и экономических факторов.

В общем случае рабочие режимы электрических сетей являются несимметричными и несинусоидальными. Симметричный синусоидальный режим следует рассматривать как частный случай. Однако если степень несимметрии и несинусоидальности кривых токов и напряжений относительно невелика, что достаточно часто имеет место, то в этом случае режим рассматривается как симметричный и синусоидальный, что позволяет значительно облегчить его расчет.

Расчет режима сети в общем случае представляет собой весьма сложную задачу. Это связано как с большим количеством элементов, образующих сети современных электрических систем, так и со специфическими особенностями задания исходных данных.

Исходными данными для расчета установившихся режимов служат: схема электрических соединений и параметры сети электроэнергетической системы, данные о потребителях (нагрузках) и источниках электроэнергии (электростанциях).

Нагрузки реальных электрических сетей при их проектировании и эксплуатации обычно задают значениями потребляемых ими активных и реактивных мощностей (Рi + jQi = Sj) или токов (Ii, cosφ), которые могут приниматься постоянными, либо зависящими от напряжения в точке подключения нагрузки в сети, т. е.

Исходными данными об источниках питания, как правило, служат выдаваемые генераторами в сеть активные мощности (Pi = const) и модули напряжений в точках подключения (Ui = const); в ряде случаев источники питания могут быть заданы и постоянными значениями активных и реактивных мощностей (Рi = const, Qi = const), аналогично нагрузкам. Кроме того, один из источников (как правило, наиболее мощная электростанция), играющий роль балансирующего, задается комплексным значением напряжения (Uδ = const).

Электрическая сеть ЭЭС представляется схемой замещения, параметры которой обычно разделяют на продольные, входящие в последовательную цепь передачи и распределения электроэнергии (сопротивления ЛЭП и трансформаторов и др.) и поперечные, соответствующие шунтам схемы (проводимости ЛЭП, трансформаторов, нагрузок).

При анализе режимов ЭЭС продольные параметры ЛЭП с проводами из цветного металла (активные и реактивные сопротивления) и поперечные параметры (активные и реактивные проводимости) принимают постоянными, не зависящими от параметров электрического режима. При рассмотрении ВЛ со стальными проводами необходимо учитывать нелинейность их параметров от токов нагрузки.

^ Симметричные установившиеся режимы работы трехфазных электрических сетей характеризуются одинаковыми значениями параметров режима отдельных фаз и синусоидальной формой кривых тока и напряжений. В этих условиях значение полной мощности для трехфазной цепи («трехфазная мощность») определяется комплексным числом.

(5.1)

Наибольшую нелинейность в аналитическое содержание задачи вносят электрические нагрузки узлов ЭЭС. При расчете установившихся режимов ЭЭС нагрузки узлов (электропотребители и источники питания) задаются в общем случае их неизменными мощностями или зависимостями этих мощностей от искомых параметров режима (напряжения, угла выбега ротора синхронных машин и т. п.), так называемыми статическими характеристиками.

Если нагрузки узлов электрической сети учитываются значениями требуемой активной и реактивной мощности, то ток каждой фазы нагрузки может быть вычислен только при известном напряжении U; на зажимах этой нагрузки, вычисляемом в ходе расчета напряжений и фазных токов:1

(5.2)

'Переход к междуфазному напряжению выполнен с допущением одинаковости угла сдвига фазного и междуфазного напряжений, что сделано в целях получения минимально упрощенного выражения мощности через междуфазное напряжение, которое опережает по фазе фазное напряжение соответствующей фазы на 30°. При анализе установившихся режимов электрических сетей это допущение значения не имеет. Однако в некоторых других случаях необходимо иметь в виду, что в (4.2) комплекс тока нагрузки или генератора имеет аргумент, смещенный на 30° по отношению к действительному аргументу тока в линейных проводах [5, 29].

Это обстоятельство препятствует непосредственному использованию законов Кирхгофа для получения однозначного решения. В этом заключается основное отличие анализа установившихся режимов ЭЭС от классического анализа электрических цепей, где источники питания и электропотребители представляются в виде источников ЭДС и источников тока с соответствующими сопротивлениями.

Такой подход к анализу ЭЭС объясняется тем, что здесь основное значение имеют энергетические характеристики, и они являются определяющими для режима систем. Вместе с тем анализ этих режимов, естественно, можно вести также непосредственно на основе алгоритмов классической теории электрических цепей с соответствующим пересчетом мощностей через токи и напряжения.

Расчеты параметров установившихся режимов обычно выполняют автоматически формализованными методами с помощью ЭВМ. Математически задача сводится к решению системы нелинейных уравнений из-за нелинейной зависимости мощности от тока и напряжения. Наиболее часто установившиеся режимы ЭЭС описываются уравнениями узловых напряжений, представляемых в форме баланса токов:

(5.3)

или в форме баланса мощностей

                                                                                                        (5.4)

Разработан большой класс методов решения этих уравнений. Инженерная оценка параметров установившихся режимов при изучении процессов проектирования и эксплуатации ЭЭС может выполняться традиционными методами, реализуемыми вручную. Эти методы базируются главным образом на прямом использовании основных законов электрических цепей (Кирхгофа, Ома и Джоуля-Ленца) и методов их эквивалентных преобразований с широкой интерпретацией соотношений между параметрами режима с помощью векторных и круговых диаграмм.

Весьма ценным свойством традиционных методов является их большая наглядность, простота толкований сущности электрических режимов, благодаря чему они широко применяются и в настоящее время. Кроме того, они имеют важное учебно-методическое значение, поскольку подготавливают студентов к переходу к более совершенным и универсальным современным методам анализа электрических режимов.


 

А также другие работы, которые могут Вас заинтересовать

32767. Политропический процесс. Теплоёмкость газа в политропическом процессе 28.5 KB
  Политропический процесс. Теплоёмкость газа в политропическом процессе. Рассмотренные выше изохорический изобарический изотермический и адиабатический процессы обладают одним общим свойством имеют постоянную теплоемкость. Термодинамические процессы при которых теплоемкость остается постоянной называются политропными.
32768. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям 26.5 KB
  Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям. Закон распределения молекул идеального газа по скоростям закон Максвелла определяет вероятное количество dN молекул из полного их числа N число Авогадро в данной массе газа которые имеют при данной температуре Т скорости заключенные в интервале от V до V dV: dN N=FVdV FV функция распределения вероятности молекул газа по скоростям определяется по формуле; FV=4πM 2πRT3 2 V2 expMV2 2RT где V модуль скорости молекул м с; абсолютная...
32769. Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле 56.5 KB
  Барометрическая формула зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа имеющего постоянную температуру T и находящегося в однородном поле тяжести во всех точках его объёма ускорение свободного падения g одинаково барометрическая формула имеет следующий вид: где p давление газа в слое расположенном на высоте h p0 давление на нулевом уровне h = h0 M молярная масса газа R газовая постоянная T абсолютная температура. Из барометрической формулы следует что концентрация молекул n или...
32770. Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул 56.5 KB
  Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул. Средние скорости молекул газа очень велики порядка сотен метров в секунду при обычных условиях. Однако процесс выравнивая неоднородности в газе вследствие молекулярного движения протекает весьма медленно.
32771. Понятие о разрежённых газах. Вакуум и методы его получения 41 KB
  Вакуум и методы его получения. Такое состояние газа называется вакуумом. Разреженный газ Вакуум среда содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d.
32772. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД 52.5 KB
  производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn полученных от внешних источников а на др. системой или над системой работа А равна алгебраической сумме количеств теплоты Q полученных или отданных на каждом участке К. Отношение А Qn совершённой системой работы к количеству полученной ею теплоты называется коэффициентом полезного действия кпд К. называется прямым если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого...
32773. Цикл Карно и его КПД для идеального газа. Второе начало термодинамики. Независимость КПД цикла Карно от рабочего вещества. Лемма Карно 47 KB
  Второе начало термодинамики. Следовательно согласно I началу термодинамики работа совершаемая двигателем равна =Q1Q2 Коэффициентом полезного действия КПД теплового двигателя называется отношение работы совершаемой двигателем к количеству теплоты полученному от нагревателя η=Q1Q2 Q1 КПД тепловой машины всегда меньше единицы η=1Q2 Q1 Следовательно невозможно всю теплоту превратить в работу. Отсюда Q2 T2≥Q1 T1 На основании этого неравенства можно прийти к понятию энтропия и второму началу термодинамики. Второе начало термодинамики ...
32774. Энтропия идеального газа при обратимых и необратимых процессах 33.5 KB
  К определению энтропии S можно прийти на основе анализа работы тепловых машин. ∆S=∆Q T Для тепловой машины изменение энтропии нагревателя и холодильника равны: ∆S1=Q1 T1 и ∆S2=Q2 T2 Формула ∆S=∆Q T справедлива для изотермического процесса и представляет собой термодинамическое определение энтропии. Для любого процесса можно найти бесконечно малое изменение энтропии т. ее дифференциал dS=δQ T где δQ элементарная теплота В интегральной форме для любого процесса изменение энтропии равно Найдем изменение энтропии за один цикл для тепловой...
32775. Статистическое толкование энтропии 31 KB
  Рассматривая Вселенную как изолированную систему и распространяя на неё второй закон термодинамики Р. Из сказанного в предыдущем разделе следует что к Вселенной в целом как изолированной системе F = 0 второе начало термодинамики неприменимо по определению. При этом второй закон термодинамики формулируется следующим образом: природа стремится от состояния менее вероятного к состоянию более вероятному. Таким образом являясь статистическим законом второй закон классической термодинамики выражает закономерности хаотического движения большого...