74358

РЕЖИМ ХХ ЛЭП

Доклад

Энергетика

РЕЖИМ ХХ ЛЭП Режим холостого хода линии электропередачи ЛЭП возникает при отключении электрической нагрузки при включении линии под напряжение в первые часы после ее монтажа а также в период синхронизации включении на параллельную работу электрических систем посредством объединяющей их ЛЭП. Режим холостого хода является частным случаем рабочего режима ЛЭП однако выделим его отдельно ввиду заслуживающей внимания особенности и практической значимости для линий напряжением 220 кВ и выше. Справедливость такого допущения можно установить...

Русский

2014-12-31

86 KB

26 чел.

55.  РЕЖИМ ХХ ЛЭП

Режим холостого хода линии электропередачи (ЛЭП) возникает при отключении электрической нагрузки, при включении линии под напряжение в первые часы после ее монтажа, а также в период синхронизации (включении на параллельную работу) электрических систем посредством объединяющей их ЛЭП.

Режим холостого хода является частным случаем рабочего режима ЛЭП, однако выделим его отдельно, ввиду заслуживающей внимания особенности и практической значимости для линий напряжением 220 кВ и выше.

Воспользуемся рассмотренным выше алгоритмом расчета линии, выполним анализ данного режима применительно к П-образной схеме замещения (рис. 6.1), пренебрегая активной проводимостью, что соответствует отсутствию (неучету) потерь мощности на коронирование. Справедливость такого допущения можно установить на основе характерных соотношений между параметрами электрического режима ЛЭП различного номинального напряжения, приведенных в параграфе 1.3. Так, например, емкостная генерация на 100 км ВЛ 220 кВ составляет около 13 Мвар, а ВЛ 500 кВ — около 95 Мвар при потерях на корону до 0,6—0,8 МВт (при хорошей погоде), что на два порядка меньше емкостной генерации. В кабельных линиях преобладание зарядной мощности над потерями в изоляции еще значительней. Поэтому потери мощности на коронирование не оказывают заметного влияния на параметры электрического режима ЛЭП. Однако их учет необходим при плохой погоде и технико-экономическом анализе ВЛ, в частности, при расчете потерь электроэнергии.

Так как в режиме холостого хода нагрузка в конце линии S2 = 0, то ее электрическое состояние определяет наряду с напряжением U, только зарядная (емкостная) мощность, направленная от конца линии к началу:

Тогда потери мощности, вызванные потоком зарядной мощности

определяют поток мощности в начале звена

Для наглядности анализа пренебрегаем потерями активной мощности по причине преобладания в рассматриваемых линиях реактивных сопротивлений над активными. Тогда поток мощности в начале звена запишем в виде

Заметим, что потери реактивной мощности соизмеримы с потоком зарядной мощности конца ЛЭП (до 10—15%), однако в отдельных случаях потерями ΔQ также можно пренебречь.

Воспользуемся формулами (6.28) и (5.74) для напряжения в конце линии, с учетом направления зарядной мощности имеем

                                                                                                                        (6.30)

При РН ≈ 0 получим

Рис. 6.2. Векторная диаграмма напряжений при холостом ходе ЛЭП

Модуль напряжения в конце линии

 (6.31)

Учитывая соотношения X > R или X » R, в данном случае справедливо ΔU'U''.  

Векторная диаграмма напряжений, построенная в соответствии с выражением (6.30), приведена на рис. 6.2.

Отсюда видно что при холостом ходе емкостная зарядная мощность, протекая по ЛЭП вызывает повышение напряжения в конце линии.

К аналогичному заключению можно прийти, если воспользоваться формулой (5.23).

Найдем напряжение в начале линии по данным конца. С учетом направления зарядной мощности (РК = 0) получим

откуда модуль напряжения в начале линии

Состояние электрических напряжений можно отобразить векторной диаграммой (рис. 6.3), из которой видно, что в режиме холостого хода напряжение в конце линии больше, чем в начале, и отстает от U1 по фазе δ.

Рис. 6.3 Векторная диаграмма напряжений в режиме холостого хода линии

Рис. 6.4. Изменение напряжения вдоль ЛЭП в режиме холостого хода

Можно дополнительно учесть, что при росте U2 происходит увеличение зарядной мощности ЛЭП, которое компенсирует ее потери.

Превышение напряжения δUX в конце ЛЭП относительно напряжения в начале можно приравнять (с допустимой погрешностью) к продольной составляющей падения напряжения

  (6.32)

т. е. с увеличением длины напряжение в конце ЛЭП возрастает квадратично (рис. 6.4)  

Дадим оценку возможного превышения напряжения. Для ВЛ 220 кВ средней длины, например, равной 200 км, получим

а для ВЛ 500 кВ протяженностью 500 км имеем

Уточним значение δUX, ограничиваясь вторым приближением:    

что превышает максимально допустимое значение 525 кВ по электрической прочности изоляции.

В итоге отметим, что в режиме холостого хода напряжение в конце протяженных ЛЭП напряжением свыше 220 кВ может достигнуть значений, на которые изоляция линий и электрооборудования не рассчитана.

Кабельные линии имеют значительно большие удельные емкостные генерации, чем воздушные. Однако, учитывая, что кабельные линии большой протяженности не прокладывают, значительных превышений напряжения в конце линий не ожидается.


 

А также другие работы, которые могут Вас заинтересовать

5587. Проблема выбора хозяйственных решений в условиях ограниченности ресурсов 193.5 KB
  Центральная проблема экономики - проблема выбора хозяйственных решений в условиях ограниченности ресурсов. Простейшая модель функционирования экономики - Граница производственных возможностей - позволяет проиллюстрировать решение основных з...
5588. Закон сохранения импульса 36.5 KB
  Закон сохранения импульса Для простоты рассмотрим движение системы, состоящей из трех точек, на каждую из которых действуют внутренние силы fik и внешние - Fi , где индекс i представляет номер точки. Уравнения движения для каждой точки имеют в...
5589. Психология личности. Курс лекций 1.13 MB
  Психология личности Лекция 1. Личность в системе современного научного знания План лекции: 1. Проблема человека в системе современного научного знания. Личность в философии, социологии и психологии. 2. О некоторых общих подходах изучения личности в ...
5590. Основы металлургического производства. Курс лекций 1.85 MB
  Лекция. Основы металлургического производства. Производство чугуна Основы металлургического производства Современное металлургическое производство и его продукция Современное металлургическое производство представляет собой комплекс различных произ...
5591. Сила, масса, импульс. Момент силы и импульса 44.5 KB
  Сила, масса, импульс. Момент силы и импульса. Причина изменения состояния тела, т.е. появление ускорения связана с понятием силы. Сила - векторная величина, она является также количественной мерой воздействия на выбранное нами тело со стороны д...
5592. Экономические ресурсы 63.5 KB
  Экономические ресурсы Выполнение основной цели деятельности предприятий - создание товаров и услуг, удовлетворяющих потребности людей, увеличение прибыли — предполагает использование экономических ресурсов. Пол экономическими ресурсами мы...
5593. Измерение расстояния по времени прохождения сигнала 416 KB
  Измерение расстояния по времени прохождения сигнала Рассмотрим три метода измерения расстояния, основанные на определении времени прохождения сигнала между объектом и приемником. Два из них - лазерные, один - ультразвуковой. Первый метод...
5594. Сравнительные исследования и анализ нововременных концепций времени 95 KB
  Что такое время. Этот вопрос с давних пор волновал человека. Ибо время постоянно присутствует в нашей жизни, определяет ее ход. На вопрос: что такое время? - мыслители разных эпох отвечали по-разному. В одну эпоху господствовала одна т...
5595. Яйца и яичные продукты. Технологические характеристики и химический состав яиц 120 KB
  Вводная часть. Яйца содержат большинство известных питательных веществ и являются низкокалорийным продуктом (2 яйца - 180 калорий). В яйцах содержится полноценный и легкоусвояемый набор белков, поэтому они полезны в качестве гарнира. Можно пода...