74358

РЕЖИМ ХХ ЛЭП

Доклад

Энергетика

РЕЖИМ ХХ ЛЭП Режим холостого хода линии электропередачи ЛЭП возникает при отключении электрической нагрузки при включении линии под напряжение в первые часы после ее монтажа а также в период синхронизации включении на параллельную работу электрических систем посредством объединяющей их ЛЭП. Режим холостого хода является частным случаем рабочего режима ЛЭП однако выделим его отдельно ввиду заслуживающей внимания особенности и практической значимости для линий напряжением 220 кВ и выше. Справедливость такого допущения можно установить...

Русский

2014-12-31

86 KB

20 чел.

55.  РЕЖИМ ХХ ЛЭП

Режим холостого хода линии электропередачи (ЛЭП) возникает при отключении электрической нагрузки, при включении линии под напряжение в первые часы после ее монтажа, а также в период синхронизации (включении на параллельную работу) электрических систем посредством объединяющей их ЛЭП.

Режим холостого хода является частным случаем рабочего режима ЛЭП, однако выделим его отдельно, ввиду заслуживающей внимания особенности и практической значимости для линий напряжением 220 кВ и выше.

Воспользуемся рассмотренным выше алгоритмом расчета линии, выполним анализ данного режима применительно к П-образной схеме замещения (рис. 6.1), пренебрегая активной проводимостью, что соответствует отсутствию (неучету) потерь мощности на коронирование. Справедливость такого допущения можно установить на основе характерных соотношений между параметрами электрического режима ЛЭП различного номинального напряжения, приведенных в параграфе 1.3. Так, например, емкостная генерация на 100 км ВЛ 220 кВ составляет около 13 Мвар, а ВЛ 500 кВ — около 95 Мвар при потерях на корону до 0,6—0,8 МВт (при хорошей погоде), что на два порядка меньше емкостной генерации. В кабельных линиях преобладание зарядной мощности над потерями в изоляции еще значительней. Поэтому потери мощности на коронирование не оказывают заметного влияния на параметры электрического режима ЛЭП. Однако их учет необходим при плохой погоде и технико-экономическом анализе ВЛ, в частности, при расчете потерь электроэнергии.

Так как в режиме холостого хода нагрузка в конце линии S2 = 0, то ее электрическое состояние определяет наряду с напряжением U, только зарядная (емкостная) мощность, направленная от конца линии к началу:

Тогда потери мощности, вызванные потоком зарядной мощности

определяют поток мощности в начале звена

Для наглядности анализа пренебрегаем потерями активной мощности по причине преобладания в рассматриваемых линиях реактивных сопротивлений над активными. Тогда поток мощности в начале звена запишем в виде

Заметим, что потери реактивной мощности соизмеримы с потоком зарядной мощности конца ЛЭП (до 10—15%), однако в отдельных случаях потерями ΔQ также можно пренебречь.

Воспользуемся формулами (6.28) и (5.74) для напряжения в конце линии, с учетом направления зарядной мощности имеем

                                                                                                                        (6.30)

При РН ≈ 0 получим

Рис. 6.2. Векторная диаграмма напряжений при холостом ходе ЛЭП

Модуль напряжения в конце линии

 (6.31)

Учитывая соотношения X > R или X » R, в данном случае справедливо ΔU'U''.  

Векторная диаграмма напряжений, построенная в соответствии с выражением (6.30), приведена на рис. 6.2.

Отсюда видно что при холостом ходе емкостная зарядная мощность, протекая по ЛЭП вызывает повышение напряжения в конце линии.

К аналогичному заключению можно прийти, если воспользоваться формулой (5.23).

Найдем напряжение в начале линии по данным конца. С учетом направления зарядной мощности (РК = 0) получим

откуда модуль напряжения в начале линии

Состояние электрических напряжений можно отобразить векторной диаграммой (рис. 6.3), из которой видно, что в режиме холостого хода напряжение в конце линии больше, чем в начале, и отстает от U1 по фазе δ.

Рис. 6.3 Векторная диаграмма напряжений в режиме холостого хода линии

Рис. 6.4. Изменение напряжения вдоль ЛЭП в режиме холостого хода

Можно дополнительно учесть, что при росте U2 происходит увеличение зарядной мощности ЛЭП, которое компенсирует ее потери.

Превышение напряжения δUX в конце ЛЭП относительно напряжения в начале можно приравнять (с допустимой погрешностью) к продольной составляющей падения напряжения

  (6.32)

т. е. с увеличением длины напряжение в конце ЛЭП возрастает квадратично (рис. 6.4)  

Дадим оценку возможного превышения напряжения. Для ВЛ 220 кВ средней длины, например, равной 200 км, получим

а для ВЛ 500 кВ протяженностью 500 км имеем

Уточним значение δUX, ограничиваясь вторым приближением:    

что превышает максимально допустимое значение 525 кВ по электрической прочности изоляции.

В итоге отметим, что в режиме холостого хода напряжение в конце протяженных ЛЭП напряжением свыше 220 кВ может достигнуть значений, на которые изоляция линий и электрооборудования не рассчитана.

Кабельные линии имеют значительно большие удельные емкостные генерации, чем воздушные. Однако, учитывая, что кабельные линии большой протяженности не прокладывают, значительных превышений напряжения в конце линий не ожидается.


 

А также другие работы, которые могут Вас заинтересовать

25691. Устойчивость работы электропривода 281 KB
  Устойчивое, неустойчивое и безразличное состояния электродвигателей. Статическая устойчивость электропривода Совмещенные механические характеристики электродвигателя и механизмов. Влияние эксплуатационных характеристик электродвигателяышечные клетки. Клетки узла проводящей системы. Формирование импульса происходит в синусном узле центральную часть которого занимают клетки первого типа водители ритма или пейсмекерные клетки Рклетки способные к самопроизвольным сокращениям.
25692. Прямая кишка 31 KB
  В тазовой части прямой кишки ее слизистая оболочка имеет три поперечные складки. В анальной части кишки различают три зоны: столбчатую промежуточную и кожную. Слизистая оболочка прямой кишки состоит из эпителия собственной и мышечной пластинок.
25693. Сердце 42.5 KB
  Стенка сердца состоит из трех оболочек: внутренней эндокарда средней миокарда и наружной эпикарда. Первая закладка сердца появляется в начале 3й недели развития у эмбриона длиной 15 мм в виде парного скопления мезенхимных клеток которые расположены в задней части головного отдела зародышевого щитка по сторонам от средней линии под висцеральным листком мезодермы. К 4му месяцу заканчивается образование всех отделов проводящей системы сердца. Клапаны сердца: предсердножелудочковые и желудочковососудистые развиваются в основном...
25694. Развитие нервной ткани 35.5 KB
  Часть клеток нервной пластинки не входит в состав нервной трубки и эпидермальной эктодермы и образует скопления по бокам от нервной трубки которые сливаются в рыхлый тяж располагающийся между нервной трубкой и эпидермальной эктодермой нервный гребень ганглиозная пластинка. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий состоящий из вентрикулярных или нейроэпителиальных клеток. Вентрикулярная эпендимная зона состоит из делящихся клеток цилиндрической формы. Клетки делятся и после деления...
25695. НЕРВНАЯ СИСТЕМА. Развитие. Нервы. Узлы. Оболочки 34 KB
  Оболочки. Клетки этой оболочки отличаются овальной формой ядер. На поперечном срезе нерва видны сечения осевых цилиндров нервных волокон и одевающие их глиальные оболочки. Соединительнотканные оболочки нерва содержат кровеносные и лимфатические сосуды и нервные окончания.
25696. Взаимодействия клеток в иммунном ответе 53.5 KB
  Узнавание рецептором Тхклетки комплекса АГ молекула МНС II класса на поверхности Влимфоцита приводит к секреции Тхклеткой интерлейкинов ИЛ2 ИЛ4 ИЛ5 ИЛ6 гаммаИФН гаммаинтерферона под действием которых Вклетка размножается и дифференцируется с образованием плазматических клеток и Вклеток памяти. Так ИЛ4 инициирует активацию Вклетки ИЛ5 стимулирует пролиферацию активированных Вклеток ИЛ6 вызывает созревание активированных Вклеток и превращение их в плазматические клетки секретирующие антитела. Они регулируют...
25698. Селезенка 49 KB
  На 12й неделе развития селезенки впервые появляются Влимфоциты с иммуноглобулиновыми рецепторами. Толщина капсулы неодинакова в различных участках селезенки. Наиболее толстая капсула в воротах селезенки через которые проходят кровеносные и лимфатические сосуды. Внутрь от капсулы отходят перекладины трабекулы селезенки которые в глубоких частях органа анастомозируют между собой.
25699. Семявыносящие пути 43 KB
  Этот проток многократно извиваясь формирует тело придатка и в нижней хвостовой части его переходит в прямой семявыносящий проток поднимающийся к выходу из мошонки а затем достигающий предстательной железы где впадает в мочеиспускательный канал. Добавочные железы мужской половой системы: семенные пузырьки предстательная железа бульбоуретральные железы. В первой половине пренатального эмбриогенеза человека из разрастающихся эпителиальных тяжей развиваются преимущественно альвеолярнотрубчатые простатические железы а со второй половины...