74360

ОБЩИЕ СВЕДЕНИЯ О РАСЧЁТЕ ЛЭП БОЛЬШОЙ ПРОТЯЖЕННОСТИ

Доклад

Энергетика

Ток и напряжение в линии непрерывно изменяются по ее длине: ток из-за наличия поперечной проводимости Yo а напряжение за счет падения напряжения в сопротивлении Zo. Изменение напряжения и тока при волновом характере передачи энергии по линии наиболее точно описываются уравнениями длинной линии...

Русский

2014-12-31

686.5 KB

6 чел.

58 ОБЩИЕ СВЕДЕНИЯ О РАСЧЁТЕ ЛЭП БОЛЬШОЙ ПРОТЯЖЕННОСТИ

Однородная ЛЭП представляет собой электрическую цепь с равномерно распределенными параметрами: с сопротивлением Z0=R0+jX0 и проводимостью Yo=g0+jb0, неизменными по длине цепи (рис. 2.9, а). Такое представление линий справедливо при условии полной электростатической и электромагнитной симметрии фаз, что в реальных условиях обеспечивается их транспозицией [10, 11]. Ток и напряжение в линии непрерывно изменяются по ее длине: ток из-за наличия поперечной проводимости Yo, а напряжение — за счет падения напряжения в сопротивлении Zo. Изменение напряжения и тока при волновом характере передачи энергии по линии наиболее точно описываются уравнениями длинной линии [8, 10, 11, 25, 27], которые при конечной длине дают соотношения между фазными напряжениями U, U2ф и токами I1 и I2 в начале и в конце линии:

                                                                                                  (2.32 а)

                                                                                                  (2.32 6)

где L — длина линии передачи.

Волновые параметры реальной линии — волновое сопротивление ZB и коэффициент распространения волны γо — определяются через ее удельные (погонные, отнесенные к 1 км) параметры:

 (2.33)

где (β0— коэффициент затухания, α0— коэффициент изменения фазы, ξфазовый угол.

Модуль волнового сопротивления ZB и коэффициент изменения фазы α0 с достаточной точностью могут быть определены по формулам

(2.34)

Справедливых для идеализированных линий (линий без потерь активной мощности), когда R0=0 и g0=0.

Рис. 2.9. Цепочная схема замещения линии с равномерно распределенными параметрами (а); моделирование линии четырехполюсником (б) и П—образной схемой замещения (в)

Для высоковольтных линий трехфазного переменного тока с нерасщепленными фазами волновое сопротивление изменяется в узких пределах, составляя для воздушных линий 375—400 Ом, а для кабельных 35—40 Ом.

Каждая фаза линии может рассматриваться как четырехполюсник, и связь между фазными напряжениями и токами в начале и конце линии выражается общими уравнениями пассивного четырехполюсника:

 (2.35 а)

 (2.35 6)

в которых А, В, С, D обобщенные константы четырехполюсника.

Сравнивая между собой соответствующие уравнения (2.32) и (2.35), получаем:

A = D = ch(γ0L),

(2.36)

где комплексные коэффициенты А, В, С, D выражены через параметры реальных линий.

В расчетах линия может быть представлена как четырехполюсником, так и П-образной схемой замещения.

Выразим константы четырехполюсника через параметры П—образной схемы замещения с сопротивлением звена Z = R + jX и проводимостью по концам схемы замещения Y/2.

Для схемы (рис. 2.9, в) связь между напряжением в начале и в конце схемы описывает закон Ома:

 (2.37)

— ток проводимости конца схемы замещения.

Сопоставив уравнения (2.35 а) и (2.37), получим

(2.38)

В соответствии с первым законом Кирхгофа определим ток в начале линии:

(2.39)

При подстановке (2.37) в (2.39) получим

                                                                                                       (2.40)

Если сравнить выражения(2.35, б) и (2,40), то

                                                                                                   (2.41)

Установим связь между параметрами линии и ее схемой замещения. Приравняв правые части выражений (2.36) и (2.38), получим

(2.42)

или, с учетом (2.36),

или

(2.43)

Таким образом, линию любой длины с равномерно распределенными параметрами можно заменить эквивалентной схемой замещения с сосредоточенными параметрами Z и Y. Параметры П-образной симметричной схемы замещения ЛЭП (рис. 2.9, в) могут быть определены с различной степенью точности в зависимости от требований к учету распределенности параметров по длине. Наиболее точно они определяются через волновые параметры реальной линии Zв и γ, вычисленные по формулам (2.42) и (2.43).

На практике более наглядно и удобно определять параметры П-образной схемы замещения линии через удельные (погонные) сопротивления Zo=Ro+jX0, Ом/км, и проводимости Yo=g0+jb0, См/км. При этом равномерную распределенность параметров линии по длине учитывают приближенно, с помощью поправочных коэффициентов, по формулам

Z = Z0Lkz;   Y = Y0LkY, (2.44)

где поправочные коэффициенты с учетом (2.42) и (2.43) определяются в виде

Учитывая значения и ,окончательно

находим [27]:

                                                                                                  

                                                                                                  (2.45)

Для определения основных характеристик (токов, напряжений, предельной передаваемой мощности) некомпенсированная воздушная линия протяженностью до 500—600 км может быть представлена П-образной схемой замещения по всей линии в целом (рис. 2.9, в). В этом случае распределенность параметров вдоль линии может быть учтена поправочными коэффициентами (2.45), вычисленными по приближенным формулам при g=0 [8, 10,11, 25, 27, 28]:

,

(2.46)

Параметры схемы замещения в этом случае определяются следующим образом:

R= R0LkR; X = X0Lkx; B = b0LkB. (2.47)

Заметное уточнение параметров (более 1 %) посредством поправочных коэффициентов проявляется для ВЛ длиной более 300 км и для кабельных линий, превышающих 50 км.

Приближенно распределенность параметров вдоль линии можно также учесть, представляя протяженную ЛЭП цепочной схемой замещения с сосредоточенными параметрами (рис. 2.10).

Всю ЛЭП разбивают на участки длиной 250—300 км и моделируют рядом последовательно включенных П-образных схем замещения. Расчет режима линии по цепочной схеме замещения ведут последовательно от одного участка к другому. При этом потери на коронирование учитываются по участкам и представляются в виде нагрузок между участками (рис. 2.10, б). Этот прием позволяет определить соотношения между напряжениями и токами не только по концам, но и находить их значения в промежуточных точках длинной линии.

Линии электропередачи с номинальным напряжением 330, 500, 750 кВ разделяют посредством переключательных пунктов на участки в 250—350 км, что локализует и уменьшает влияние поврежденных участков на изменение параметров режима и устойчивость работы сети (рис. 2.10, а). Такое построение линии, а также включение промежуточных подстанций разбивает электропередачу на участки, и ее удобно моделировать цепочной схемой замещения.

Протяженные линии в режиме минимальных нагрузок имеют избыток реактивной мощности, генерируемой линией. Для компенсации этой мощности и предотвращения опасного для изоляции сети превышения напряжения на приемном конце и вдоль линии устанавливают шунтовые реакторы, располагая их на переключательных пунктах или промежуточных подстанциях.

Избыток емкостной генерации ЛЭП может компенсироваться потреблением реактивной мощности нагрузкой подстанций. Включение реактора на шинах ВН станции обеспечивает возбуждение генераторов, необходимое для их устойчивой работы.

Рис. 2.10. Принципиальная схема (а) и цепочная схема замещения (б) протяженной линии электропередачи


 

А также другие работы, которые могут Вас заинтересовать

32212. Структура версионного процесса. Построение следств версий 32 KB
  Построение следств версий криминалистическая версия это логически построенное и основанное на фактических данных предположительное умозаключение следователя других субъектов познавательной деятельности по уголовному делу о сути исследуемого деяния об отдельных его обстоятельствах и деталях направленное на выяснение истинных обстоятельств дела и требующее соответствующей проверки. Процесс построения версий распадается на ряд условных этапов. Началом процесса построения версий обычно являются анализ и синтез имеющихся в распоряжении...
32213. Следственный эксперимент 45.5 KB
  Оценка резтов эксперимента. Значение следственного эксперимента заключается в том что его результаты позволяют подтвердить или опровергнуть собранные по делу доказательства а нередко и получить их. Так в ходе следственного эксперимента по проверке возможности совершения определенных действий могут быть точно оценены предположения о наличии или отсутствии у подозреваемого профессиональных или преступных навыков например в использовании газосварочного оборудования для взлома сейфа открывании замка с помощью отмычек и т. Для производства...
32214. Стадии осмотра МП. Способы и методы осмотра 42.5 KB
  Способы и методы осмотра. Каждый этап осмотра имеет свои цели и реализуется с помощью различных тактических приемов. По результатам сопоставления если нужно вносятся коррективы в план осмотра.
32215. Понятие обыска и выемки, их цели и задачи 57.5 KB
  Понятие обыска и выемки их цели и задачи. В ходе обыска могут и должны решаться следующие задачи: 1 отыскание и изъятие орудий преступления предметов и ценностей добытых преступным путем а также других предметов и документов которые могут иметь значение для дела; 2 обнаружение разыскиваемых лиц преступников и граждан взятых в заложники; 3 отыскание трупа или его частей; 4 выемка имущества на которое может быть наложен арест для обеспечения конфискации или возмещения причиненного преступлением материального ущерба; 5 поиск и...
32216. Осмотр места преступления 31.5 KB
  Поисковый харр осмотра МП роль типичных версий при его произвве. Оперативнорозыскные действия могут осуществляться: до и независимо от осмотра; во время его проведения в зависимости от полученных при этом данных требующих реализации до завершения осмотра. В связи с этим никаких процессуальных документов о результатах использования служебнорозыскной собаки к протоколу осмотра не прилагается; б заградительные мероприятия путем установления наблюдения за узловыми пунктами предполагаемого маршрута передвижения скрывшегося преступника в...
32217. Осмотр трупа на Месте преступления 30.5 KB
  Наружный осмотр трупа на месте его обнаружения в соответствии со ст. Вся ответственность за ход и результаты осмотра трупа лежит на нем так как факты исследуемые и фиксируемые при осмотре не могут быть восполнены при судебномедицинской экспертизе трупа. Фиксируется время начала осмотра температура окружающей среды и трупа.
32218. Стадии обыска и тактические основы его произ-ва 52.5 KB
  Стадии обыска и тактические основы его произва. В ходе обыска могут и должны решаться следующие задачи: 1 отыскание и изъятие орудий преступления предметов и ценностей добытых преступным путем а также других предметов и документов которые могут иметь значение для дела; 2 обнаружение разыскиваемых лиц преступников и граждан взятых в заложники; 3 отыскание трупа или его частей; 4 выемка имущества на которое может быть наложен арест для обеспечения конфискации или возмещения причиненного преступлением материального ущерба; 5 поиск и...
32219. Понятие следственного эксперимента, его цели, задачи 31 KB
  Под следственным экспериментом понимается следственное действие производимое с целью выяснения объективной возможности наличия существенного для дела обстоятельства путем воспроизведения условий проверяемого события и производства опытов. Следственные эксперименты могут проводиться для решения следующих задач: установления возможности существования какоголибо факта или возникновения явления при данных условиях; установления возможности осуществления определенного механизма события или отдельных его элементов при определенных условиях; ...
32220. Понятие осмотра МП, его цели и задачи 42.5 KB
  Осмотр места происшествия это неотложное следственное действие заключающееся в непосредственном восприятии исследовании и фиксации следователем обстановки места происшествия относящихся к делу следов и объектов их индивидуальных особенностей и взаимосвязей в целях выяснения сущности происшедшего события механизма преступления и отдельных обстоятельств имеющих значение для правильного разрешения дела. Понятие Место происшествия шире понятия Место преступления. Место происшествия любой участок местности территория где обнаружены...