74574

Метаморфизм

Лекция

География, геология и геодезия

Преобразованию могут подвергаться любые горные породы осадочные магматические и ранее образовавшиеся метаморфические. В физикохимических условиях отличных от тех в которых образовались горные породы происходит изменение их минерального состава структуры и текстуры. без изменения химического состава метаморфизуемой породы и метасоматически т.

Русский

2015-01-04

53 KB

3 чел.

Метаморфизм

общая характеристика и основные факторы метаморфизма

Метаморфизм — преобразование горных пород под действием эндогенных процессов, вызывающих изменение физико-химических условий в земной коре. Преобразованию могут подвергаться любые горные породы — осадочные, магматические и ранее образовавшиеся метаморфические. В физико-химических условиях, отличных от тех, в которых образовались горные породы, происходит изменение их минерального состава, структуры и текстуры. Изменение минерального состава при метаморфизме может протекать изохимически, т.е. без изменения химического состава метаморфизуемой породы, и метасоматически, т. е. со значительным изменением химического состава метаморфизуемой породы за счет привноса и выноса вещества. Изменение структуры и текстуры пород обычно происходит в процессе перекристаллизации вещества. Особенность метаморфических процессов заключается в том, что они протекают с сохранением твердого состояния системы, без существенного расплавления пород. Лишь при определенных физико-химических условиях метаморфизм сопровождается частичной или полной кристаллизацией исходных пород. Процессы подобного характера объединяются под названием ультраметаморфизма.

В зависимости от интенсивности метаморфических процессов наблюдается постепенный переход от слабо измененных пород, сохраняющих состав и структуру исходных разностей, до глубоко преобразованных пород, первичная природа которых практически утрачена.

Метаморфизм представляет собой сложное физико-химическое явление, обусловленное комплексным воздействием температуры, давления и химически активных веществ. Он протекает без существенного изменения химического состава первичных пород. Различают следующие виды метаморфизма.

Термальный метаморфизм

Температура — важнейший фактор термального метаморфизма, влияющий на процессы минералообразования и определяющий формирование тех или иных минеральных ассоциаций. При повышении температуры резко увеличивается скорость химических реакций и возрастает интенсивность процессов перекристаллизации. Повышение температуры способствует экзотермическим метаморфическим реакциям, идущим с поглощением тепла, вызывает дегидратацию гидроксилсодержащих минералов, декарбонатизацию карбонатов и приводит к образованию высокотемпературных минералов, лишенных конституционной воды. Перекристаллизация в условиях роста температур приводит к появлению более крупнозернистых структур.

Температурный интервал, в пределах которого происходят типичные метаморфические преобразования, согласно данным В. С. Соболева (1970 г.), находится в пределах 300—1000 °С. Ниже 300 °С вследствие резкого падения скорости химических реакций метаморфические превращения почти не происходят или совершаются крайне медленно; верхний предел ограничен температурой начала плавления наиболее распространенных горных пород и отвечает условиям образования магмы.

В общем случае интенсивность преобразований, связанных с воздействием температуры, увеличивается с глубиной залегания пород и ростом продолжительности теплового воздействия. Однако прямой зависимости здесь не существует, поскольку в разных зонах коры значения теплового потока и геотермического градиента различны. Этим объясняется неодинаковая степень температурных преобразований пород, залегающих на сопоставимых глубинах, но в различных областях земного шара.

Динамометаморфизм

Давление — фактор динамометаморфизма. Различают воздействие геостатического (петростатического) давления, которое создается массой вышележащих толщ пород, и направленного давления (стресса), вызываемого тектоническими движениями.

Геостатическое давление способствует реакциям, идущим с сокращением объема твердой фазы, и приводит к образованию минералов с более плотной упаковкой (и большой плотностью). Кроме того, геостатическое давление вызывает повышение температуры плавления минералов, расширяя тем самым интервал температурных преобразований в твердой фазе. В условиях всестороннего давления формируются породы с однородной массивной текстурой.

Направленное давление (стресс) проявляется в деформации пород и приводит к изменению их структурно-текстурных особенностей. Под влиянием стресса минералы в породе приобретают закономерную ориентировку, располагаясь длинными осями и плоскостями спайности перпендикулярно к направлению давления. При этом формируются так называемые сланцевые текстуры, характерные для обширной группы метаморфических пород — сланцев. Кроме того, стресс оказывает каталитическое воздействие на процессы минералообразования, ускоряя или замедляя их, и, вызывая дробление пород, повышает их фильтрационные свойства, что способствует циркуляции метаморфизующих растворов.

Изменения геостатического и направленного давления с глубиной неодинаковы: если первое в общем увеличивается, то второе, наоборот, ослабевает. На глубинах свыше 10 км направленные давления практически не проявляются, поскольку сокращение объема пустотного пространства в условиях высокого геостатического давления приводит к пересыщению породы растворами и преобразованию направленного давления в геостатическое. Однако и геостатическое давление контролируется не только глубиной. Согласно расчетным данным его величина в подошве земной коры не превышает 1300 МПа. Между тем изучение минералов, полученных экспериментальным путем, и сопоставление их с естественными ассоциациями минералов метаморфических пород показывают, что давления при метаморфизме в земной коре могут достигать 2500 МПа. Отсюда следует, что при определенных условиях величина давления зависит не только от массы вышележащих толщ пород, но в значительной степени и от процессов направленного сжатия (в том числе и в горизонтальном направлении), которые вызывают аномальное увеличение давления на относительно небольших глубинах.

Метасоматоз

Химически активные вещества — третий и, вероятно, самый главный фактор метаморфизма, который приводит к изменению химического состава пород. К ним, прежде всего, относятся вода и углекислота; в последнее время не меньшее значение придается водороду — газу, обладающему высокими теплопроводностью и диффузионной способностью. Существенную роль играют также соединения N, Cl, F, B, S и других элементов. В виде растворов сложного состава эти вещества мигрируют через горные породы, оказывая на них метаморфизующее воздействие. Согласно господствующей точке зрения, обоснованной Д. С. Коржинским, А. А. Маракушевым и др., метаморфизующие растворы имеют глубинное (подкоровое) происхождение. Вода, содержащаяся в осадочных породах и освобождающаяся в процессе их высокотемпературного преобразования, не имеет большого значения и обычно не сказывается на общем характере метаморфизма. Основным фактором, по-видимому, являются восходящие горячие растворы, которые диффундируют из недр сквозь мельчайшие пустоты пород и через магматические расплавы, и, обогащаясь минерализаторами, становятся активными агентами метаморфизма. Об огромной роли этих растворов можно судить по тому факту, что в так называемых сухих системах, т. е. в породах, лишенных растворов вследствие малого объема их пустотного пространства, даже при наличии высоких давлений и температур метаморфические преобразования практически не происходят или идут крайне медленно.

Типы и условия проявления метаморфизма

В природных условиях в различных участках земной коры совместно проявляются несколько факторов метаморфизма, однако масштаб их проявления в целом и относительная роль каждого фактора в метаморфическом процессе определяются конкретной геологической обстановкой. По особенностям пространственного размещения и размаху процесса различаются два основных типа метаморфизма: локальный и региональный. Метасоматический метаморфизм может сопровождать метаморфизм любого типа и поэтому развивается как в локальных, так и в региональных условиях.

Локальный метаморфизм контролируется конкретными структурными элементами — разломами, контактами с интрузивными породами, пликативными дислокациями. Образующиеся при этом метаморфические породы связаны постепенными переходами с неметаморфизованными толщами. К локальным формам проявления метаморфизма относятся контактовый и катакластический метаморфизм.

Контактовый метаморфизм проявляется в пределах ореолов химического и термального воздействия интрузий на вмещающие породы. Основными факторами этого метаморфизма являются температура и химически активные вещества. По данным В. С. Соболева, температурный интервал, в котором происходит типичный контактовый метаморфизм, заключается в пределах 550—900 °С. Процесс идет при относительно низких давлениях и широком развитии метасоматоза. Летучие компоненты магмы, проникая в виде растворов и газов в окружающие породы, вступают с ними в реакцию и приводят к резкому изменению их химического состава. Особенно значительны воздействие химических агентов и проявление метасоматоза на контакте вмещающих пород с интрузиями кислого состава; интрузий основных и ультраосновных магм оказывают в основном термальное воздействие на окружающие отложения. В целом величина контактового ореола, степень метаморфизма вмещающих пород в ореоле и характер преобразований зависят от температуры, объема и состава внедрившегося расплава. Типичными породами контактово-термального метаморфизма являются роговики; к породам, образовавшимся в результате контактово-метасоматических процессов (метасоматитам), относятся скарны, грейзены, вторичные кварциты. С метасоматитами связано большое количество месторождений полезных ископаемых (олово, вольфрам, молибден, золото, полиметаллы).

Катакластический метаморфизм, или динамометаморфизм, происходит под действием направленных давлений и заключается в механическом разрушении (дроблении и перетирании) пород — катаклазе. Катакластический метаморфизм проявляется в тех случаях, когда величина направленного давления превышает предел прочности пород. В результате катакластического метаморфизма в чистом виде, без участия температурного фактора и термальных растворов, образуются катакластические породы с различной степенью раздробленности: тектонические брекчии, катаклазиты,-милониты. Однако в чистом виде катакластический метаморфизм происходит редко, поскольку областями его максимального проявления служат зоны глубинных разломов, являющиеся в то же время и основными путями подъема тепла и термальных растворов из недр.

Региональный метаморфизм проявляется на обширных участках и охватывает огромные объемы пород, в пределах которых отсутствуют переходы к неметаморфизованным отложениям. Факторами регионального метаморфизма являются температура, давление и химически активные вещества, действующие совместно. При региональном метаморфизме осуществляются и изохимические и метасоматические процессы. Формирующиеся при этом породы отличаются большим разнообразием — сланцы, гнейсы, кварциты, мраморы, амфиболиты, гранулиты, эклогиты.

Региональный метаморфизм обычно связан с активными геосинклинальными областями, однако в отношении условий его проявления существуют две принципиально различные точки зрения. В соответствии с первой точкой зрения причиной его является длительное, устойчивое прогибание участков земной коры, при котором осадочные и вулканогенные толщи, погружаясь, попадают в условия все более высоких температур и давлений. Однако исследования последних лет показали, что прогибание коры само по себе не является причиной метаморфизма. В прогибах, где нет складкообразовательных движений и других деформаций, обычно отсутствуют и проявления регионального метаморфизма. В Прикаспийской впадине, например, мощность практически неметаморфизованных осадочных отложений достигает 25 км. Эти факты послужили основанием для того, чтобы соотносить региональный метаморфизм с орогенной стадией развития коры, характеризующейся интенсивным складкообразованием, подъемом магматических масс и генетически связанных! с ними термальных растворов. Последняя точка зрения развивается в трудах Д. С. Коржинского, Ю. А. Кузнецова, А. А. Маракушева и завоевывает все большее признание.

В обстановке регионального метаморфизма процессы преобразования пород могут достигать максимальной интенсивности, приобретая характер ультраметаморфизма. Он обычно протекает на большой глубине в пределах складчатых областей, где термодинамические условия допускают частичное или полное переплавление пород. Главнейшие процессы ультраметаморфизма — анатексис, палингенез и гранитизация.

Анатексис — частичное, избирательное выплавление минералов кварц-полевошпатового состава из исходных пород. В различных количествах расплав такого состава может получаться из любых осадочных и пирокластических пород (за исключением карбонатов, эвапоритов и некоторых других).

Палингенез — полное переплавление исходных пород оп-пределенного состава с образованием гранитной магмы. Это явление обычно связано с переплавлением гранито-гнейсов и осадочных пород, химический состав которых отвечает гранитам.

Гранитизация — процесс химического и минерального изменения пород любого состава с превращением их в граниты. Согласно Д. С. Коржинскому (1952 г.) и А. А. Маракушеву (1973 г.) в процессе гранитизации исходная порода обязательно проходит стадию магматического расплава. Агентами гранитизации являются растворы, которые вызывают расплавление исходной породы, а затем, диффундируя через расплав, изменяют его состав до состава гранитной магмы. Компоненты гранитов при этом растворяются в образовавшейся магме, а компоненты, «избыточные» по отношению к составу гранитной магмы, выносятся растворами за пределы магматического очага.

Таким образом, в обстановке глубоких метаморфических преобразований пород стирается граница между метаморфическими и магматическими процессами и завершается тот круговорот в природе, идея которого еще в начале века была высказана русским петрографом И. Д. Лукашевичем: магма ® магматические породы ®осадочные породы ® метаморфические породы ® магма.


 

А также другие работы, которые могут Вас заинтересовать

49540. Интегрирующий привод для электромеханических вычислительных устройств 476 KB
  Принцип работы системы. При поступлении на вход системы задающего воздействия двигатель приходит во вращение. В результате разбиения САР на звенья направленного действия и получения математического описания звеньев составляется структурная схема системы...
49541. Следящая система управления зеркалом телескопа 7.75 MB
  Специалист в области автоматики должен уметь проанализировать работу системы и обеспечить ее коррекцию таким образом чтобы САР удовлетворяла всем предъявленным к ней условиям устойчивости и качества регулирования. Задачей данной курсовой работы является введение в основы проектирования системы автоматического регулирования. Если показатели качества и устойчивости не будут удовлетворять заданным то необходимо обеспечить коррекцию системы. Если в скорректированной САР показатели качества регулирования и устойчивости будут удовлетворять...
49542. Воспитание скоростно-силовых способностей у бегунов на короткие дистанции 17-18 лет в подготовительном периоде 58.45 KB
  Подготовка бегуна на короткие дистанции - многогранный и сложный педагогический процесс. Достижение высоких спортивных результатов в легкой атлетике во многом обусловлено оптимальным уровнем скоростно-силовой подготовленности, поэтому рациональное построение соотношения специальной физической подготовки
49544. Проект системы автоматического регулирования (САР) частоты вращения двигателя постоянного тока 8.87 MB
  При дальнейшем анализе системы второстепенными возмущениями будем пренебрегать. Принцип работы системы. Рассматриваемая САР относится к системам с последовательной коррекцией так как корректирующее устройство включается последовательно со звеньями системы. Передаточные функции системы.
49548. РАКИ ОТДЕЛЬНЫХ ОРГАНОВ (лёгкого, желудка, молочной железы, шейки и тела матки) 4.81 MB
  В настоящем учебно-методическом пособии рассмотрены вопросы патологической анатомии рака пяти локализаций – лёгкого, желудка, молочной железы, шейки и тела матки, соответственно теме практического занятия.