74781

Термодинамический и статистический подход к изучению поведения систем. Термодинамические параметры. Статистическое и термодинамическое определение абсолютной температуры

Доклад

Физика

Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода. Этот метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы...

Русский

2015-01-05

30.5 KB

1 чел.

21.Термодинамический и статистический подход к изучению поведения систем. Термодинамические параметры. Статистическое и термодинамическое определение абсолютной температуры

Термодинамический и статистический подход к изучению поведения систем Строгое развитие молекулярной теории относится к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822—1888), Дж. Максвелла и Л. Больцмана.Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода. Этот метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т. д.). Например, температура тела определяется скоростью хаотического движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах — фундаментальных законах, установленных в результате обобщения опытных данных.Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинамический метод несколько ограничен: термодинамика ничего не говорит о микроскопическом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.Термодинамика имеет дело с термодинамической системой — совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинамического метода — определение состояния термодинамической системы.Термодинамические параметры - совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и удельный объем. температура, плотность, давление, объем, удельное электрическое сопротивление и другие физические величины: - однозначно определяющие термодинамическое состояние системы; - не учитывающие молекулярное строение тел; и - описывающие их макроскопическое строение. термодинамическое определение абсолютной температуры— это безусловная мера температуры и одна из главных характеристик термодинамики. Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К). Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры: абсолютный ноль — наиболее низкая возможная температура, при которой ничего не может быть холоднее и теоретически невозможно извлечь из вещества тепловую энергию. Абсолютный ноль определен как 0 K. Что приблизительно равно −273.15 °C. Один Кельвин равен одному градусу Цельсия.


 

А также другие работы, которые могут Вас заинтересовать

348. Курортный горнолыжный комплекс в городе Ишимбай, республика Башкортостан 1.12 MB
  Градостроительный принцип формирования рекреационных систем. Роль и назначение проектируемой территории в формировании архитектурного облика города. Принципы архитектурно-планировочной организации рекреационных центров.
349. Определение момента инерции твердых тел с помощью маятника Максвелла 121 KB
  Момент инерции системы (тела) относительно оси вращения это скалярная величина, равная сумме произведения масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.
350. Компьютерные науки 396.5 KB
  Методические указания по выполнению бакалаврских аттестационных работ для студентов, обучающихся по направлению 6.0804 - Компьютерные науки. Требования к тематике бакалаврских аттестационных работ, их содержанию, объему и структуре пояснительной записки и графической части бакалаврской работы.
351. Общая биология и генетика. Теории наследственности 147.83 KB
  Фенотипическая изменчивость. Её закономерности и причины. Ненаследственная изменчивость. Мутагенные факторы. Тератогенные факторы. Понятие об обмене веществ (метаболизме). Понятие об энергетическои и пластическом обмене.
352. Цивільне процесуальне право 803.5 KB
  Поняття і види третіх осіб в цивільному процесі. Продовження та поновлення процесуальних строків. Пояснення сторін та їхніх представників як засіб доказування. Судове засідання як процесуальна форма розгляду та вирішення цивільної справи.
353. Построить фильтр низких и высоких частот 567 KB
  Для создания полосового или режекторного типа фильтров можно каскадно соединить ФНЧ и ФВЧ. Но такими типами, зачастую, не пользуются из-за плохих характеристик. Тут есть несколько вариаций. Наверное, самый простой — это фильтр Вина-Робинсона.
354. Типы и способы сварочных работ 974.5 KB
  Автоматическая дуговая сварка под флюсом. Электрошлаковая сварка и приплав. Прогрессивные методы сборки и сварки узла. Способы борьбы с деформациями при кислородной резке. Сварка, понятие, виды и классы.
355. Проектирование информационной системы по учету материалов 899.5 KB
  Обзор программных средств для решения поставленной задачи. Учет материалов на складах и его неразрывная связь с учетом материалов в бухгалтерии. Данная программа предоставляет возможность формировать выходные данные, такие как: печатные формы документов, отчеты, а также корректировать информацию.
356. Екологічне право України 798 KB
  Особливості права використання рекреаційних, курортних і лікувально-оздоровчих зон. Користування надрами, атмосферним повітрям, водокористування. Поняття екологічних надзвичайних ситуацій, зон та їх класифікація.