74782

Понятие идеального газа. Давление. Основное уравнение молекулярно-кинетической теории газов. Основное уравнение молекулярно-кинетической теории газов

Доклад

Физика

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим одноатомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда...

Русский

2015-01-05

85 KB

0 чел.

22.Понятие идеального газа. Давление. Основное уравнение молекулярно-кинетической теории газов

Основное уравнение молекулярно-кинетической теории газов

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим одноатомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку S (рис. 64) и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс m0v(– m0v) = 2m0v, где m0 — масса молекулы, v ее скорость. За время t площадки S достигнут только те молекулы, которые заключены в объеме цилиндра с основанием S и высотой vt (рис. 64). Число этих молекул равно nSvt (n — концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке S под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул 1/6 движется вдоль данного направления в одну сторону, половина — в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку S будет 1/6nSvt. При столкновении с площадкой эти молекулы передадут ей импульс

 

Тогда давление газа, оказываемое им на стенку сосуда,

(43.1)

Если газ в объеме V содержит N молекул, движущихся со скоростями v1, v2, ..., vN, то целесообразно рассматривать среднюю квадратную скорость

(43.2)

характеризующую всю совокупность молекул газа.

Уравнение (43.1) с учетом (43.2) примет вид

(43.3)

Выражение (43.3) называется основным уравнением молекулярно-кинетической теории идеальных газов.

В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой считают, что:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, так как они в условиях, близких к нормальным (например, кислород и гелий), а также при низких давления» и высоких температурах близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов.

рассмотрим.

Закон Бойля-Мариотта: для данной массы газа при постоянной температуре произведение давления газа на объем есть величина постоянная;рv = const при Т, m = сonst 42.1Кривая, изображающая зависимость между величинами р и V, характеризующими свойства вещества при постоянной температуре, называется изотермой.Изотермы представляют собой гиперболы, расположенные на графике тем выше, чем выше температура (рис.38).

Законы Гей-Люссака:1) объем данной массы при постоянном давлении изменяется линейно с температурой: V = V0 (1 + t) при p ,m = const (42.2)2)давление данной массы газы при постоянном объеме изменяется линейно с температурой: p = p0 (1+t) при V, m = const-42.3 В этих уравнениях t - температура по шкале Цельсия, р0 и V0 - давление и объем при О0С, коэффициент = 1/273.15 К-1.Процесс, протекающий при постоянном давлении, называется и з о б а р н ы м.На диаграмме в координатах V, t(рис.39) этот процесс изображается прямой, называемой изобарой. Процесс, протекающий при постоянном объеме , называется и з о х о р н ым. На диаграмме в координатах p, t (рис.40) он изображается прямой, называемой изохорой.Из 42.2 и 42.3 следует, что изобары и изохоры пересекают ось температур в точке t = - 1/ = - 273.15 0С, определяемой из условия 1+ t = 0. Если сместить начало

отсчета в эту точку, то происходит переход к шкале Кельвина (рис.40)

откуда Т = t + 1/

Вводя в формулы 42.2 и 42.3 термодинамическую температуру, закона Гей-Люссака можно придать более удобный вид:V = V0 (1 + t) = V0 [1+( T - 1/)] = V0T;p = p0(1+ t) = p0[1+( T - 1/)] = p0  T; или V1/V2 = T1/T2 при p, m = const 41.4 p1/p2 = T1/T2 при V, m = const---41.5 где индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях ( р = 1.013 105 Па, Т = 273, 15 К) этот объем равен 22.41 10-3 м3/ моль.По определению, в одном моле различных веществ содержится одно и тоже число молекул, называемое постоянной Авогадро:N a = 6.022 10 23 моль-1.Закон Дальтона : давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов, т.е.р = р1 + р2 + ......+ рn где р1,......, рn - парциальные давления - давления, которые оказывали бы газы смеси, если бы они одни занимали объем, равный объему смеси при той же температуре.

Основное уравнение молекулярно-кинетической теории идеальных газов. Для вывода уравнения рассмотрим одноатомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежно мало по сравнению с числом ударов о стенки сосуда, соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку S (рис.42) и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула массой m0 передает стенке сосуда импульс: m0v - ( - m0v) = 2 m0 v,

где v - скорость молекул газа. За время t площадки S достигнут только те молекулы, которые заключены в объеме цилиндра с основанием S и высотой v t (рис.42).

Число этих молекул равно nS vt (n - число молекул в единице объема).Необходимо, однако, учитывать, что реально молекулы движутся к площадке S под разными углами и имеют скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул (1/6) движется вдоль данного направления в одну сторону, половина в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку S будет 1/6 n S vt. При столкновении с площадкой эти молекулы передадут ей импульс Р = 2 m0v 1/6 nS v  t = 1/3 n m0 v2 St. Тогда давление газа, оказываемое им на стенку сосуда р= Р/ (t S) = 1/3 n m0v2-44.1Если газ в объеме V содержит N молекул, движущихся со скоростями v1,v2,...,vn, то целесообразно рассматривать среднюю квадратичную скорость44.2 характеризуюущую всю совокупность молекул газа.

Уравнение 44.1 и 44.2 примет вид р = 1.3 nm0 < vкв>2Учитывая, что n = N/ v, получим рV = 1/3 Nm0 < vКВ>2-44.3 или pV = 2/3 N (m0<vкв>2/2) = 2/3 E---44.4 где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.Выражение 44.4 или эквивалентное ему 44.3 называется основным уравнением молекулярно-кинетической теории идеальных газов.Так как масса газа m = N m0, то уравнение 44.3 можно переписать в виде pV = 1/3 m < vкв>2Для одного моля газа m=M (M - молярная масса), поэтому где Vm - молярный объем. С другой стороны, по уравнению Клайперона-Менделеева рVm = RT. Таким образом, RT = 1/3 M < vкв>2, откуда -44.5Так как M = m0Na, где m0 - масса одной молекулы, а N - постоянная Авогадро, то из уравнения 44.5, следует, что < vкв> = 3RT / (m0Na) = 3 kT/m0-44.6 где k = R/NA - постоянная Больцмана.Средняя кинетическая энергия поступательного движения одной молекулы идеального газа <0> = Е/N = m0 <vкв>2/2 = 3/2 kT-44.7пропорциональна термодинамической температуре и зависит только от нее

Давле́ние (P) — физическая величина, характеризующая состояние сплошной среды и численно равная силе , действующей на единицу площади поверхности перпендикулярно этой поверхности. В простейшем случае анизотропной равновесной неподвижной среды (гидростатическое давление) или идеальной (не имеющей внутреннего трения и анизотропной) движущейся среды давление не зависит от ориентации поверхности. В данной точке давление определяется как отношение нормальной составляющей силы, действующей на малый элемент поверхности, к его площади:

.

Среднее давление по всей поверхности есть отношение силы к площади поверхности:


 

А также другие работы, которые могут Вас заинтересовать

13188. Дослідження аналого-цифрових перетворювачів на базі лабораторного стенду EV8031/AVR 64.5 KB
  ЛАБОРАТОРНА РОБОТА №10 Дослідження аналогоцифрових перетворювачів на базі лабораторного стенду EV8031/AVR Мета роботи Навчитися вимірювати аналогову величину. Розробка програм вимірювання аналогових величин для різних методів вимірювання і типів АЦП. ...
13189. Естествознание 419 KB
  Предмет сущность и цели современного естествознания. Естествознание система наук о природе. Природа это вселенная то куда может достигнуть человеческий опыт. Природа делится на 3 мира: микро мир; макро мир; мега мир. Микро мир это мир внутри атомов. Макро мир прос...
13190. Кәсіпорын балансы және оны талдау 387 KB
  Мазмұны Кіріспе Кәсіпорынның жалпы шаруашылық қызметінің сипаттамасы. Кәсіпорын қызметінің мәні мақсаттары мен міндеттері. Кәсіпорынның бухгалтерлік есебінің ұйымдастырылуы және есеп саясаты. Кәсіпорынның техникалықэкономикалық көрсеткіштеріні...
13191. БІЛОРУСІЯ у 1917–1920 рр. 29.5 KB
  БІЛОРУСІЯ у 19171920 рр. Звістка про перемогу Лютневої революції 1917 р. у Білорусію надійшла 14 березня 1917 р. Відбулися масові мітинги та демонстрації. Одною з перших у Білорусії була створена Мінська Рада робітничих депутатів. Були заарештовані командуючий фронтом начальн
13192. Білорусія у 1920–1930-х рр 23.41 KB
  Білорусія у 1920-1930х рр. На початку 1921 р. було розроблено план що активно підтримувався правлячими колами Польщі. Діяльністю савинковських підпільних груп на території Радянської Білорусії керував Західний обласний комітет Союзу що функціонував підпільно в Гомелі. По с...
13193. Західна Білорусія під владою Польщі (1921–1939 р.) 17.78 KB
  Західна Білорусія під владою Польщі 19211939 р. За умовами Ризького мирного договору підписаного 18 березня 1921 р. між Польщею з одного боку і Радянською Росією та Радянською Україною з іншого боку західні області Білорусії разом із західною частиною України відійшли до...
13194. БІЛОРУСІЯ в роки Другої світової війни 20.34 KB
  БІЛОРУСІЯ в роки Другої світової війни Згідно таємного протоколу між Радянським Союзом та Німеччиною за договором від 23 серпня 1939 р. Західна Білорусія і частина Польщі на схід від річок Нарев Вісла і Сян увійшли до сфери впливу СРСР. 14 вересня 1939 р. німецькі війська зайн
13195. БІЛОРУСІЯ у 1945–1991 рр. 117 KB
  БІЛОРУСІЯ у 1945-1991 рр. В 1946 р. у республіці було створено Міністерство закордонних справ. Однак БРСР не була самостійним правосубєктом міжнародних відносин. Її роль та місце на міжнародній арені визначалися політикою КПРС і Радянської держави. В 1945 р. з ініціативи СРС
13196. Бєларусь з найдавніших часів до другої половини ХVI ст. 29.27 KB
  Бєларусь з найдавніших часів до другої половини ХVI ст. Перші люди на території Європи зявилися близько 600 тис. років до н. е. у Білорусії близько 100 тис. років до н.е. Це було повязано з тим що в давнину територія Білорусії була покрита льодовиками. Відомі три великі ...