74783

Внутренняя энергия системы. Внутренняя энергия идеального газа. Первое начало термодинамики. Примеры

Доклад

Физика

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: в форме работы и в форме теплоты. Энергия механического движения может превращаться в энергию теплового движения и наоборот.

Русский

2015-01-05

35.5 KB

1 чел.

23.Внутренняя энергия системы. Внутренняя энергия идеального газа. Первое начало термодинамики. Примеры.

Первое начало термодинамики

некоторая система (газ, заключенный в цилиндр под поршнем), обладая внутренней энергией U1, получила некоторое количество теплоты Q и, перейдя в новое состояние, характеризующееся внутренней энергией U2, совершила работу А над внешней средой, т. е. против внешних сил. Количество теплоты считается положительным, когда оно подводится к системе, а работа — положительной, когда система совершает ее против внешних сил. Опыт показывает, что в соответствии с законом сохранения энергии при любом способе перехода системы из первого состояния во второе изменение внутренней энергии U=U2–U1 будет одинаковым и равным разности между количеством теплоты Q, полученным системой, и работой А, совершенной системой против внешних сил:

или

  (51.1)

Уравнение (51.1) выражает первое начало термодинамики: теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Выражение (51.1) в дифференциальной форме будет иметь вид

или в более корректной форме

(51.2)

где dU бесконечно малое изменение внутренней энергии системы, A элементарная работа, Q бесконечно малое количество теплоты. В этом выражении dU является полным дифференциалом, а A и Q таковыми не являются. В дальнейшем будем использовать запись первого начала термодинамики в форме (51.2).

Из формулы (51.1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии U=0. Тогда, согласно первому началу термодинамики,

т. е. вечный двигатель первого рода — периодически действующий двигатель, который совершал бы бóльшую работу, чем сообщенная ему извне энергия, — невозможен (одна из формулировок первого начала термодинамики).

Внутренняя энергия системы может изменяться в результате различных процессов, например, совершения над системой работы и сообщения ей количества теплоты.

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: в форме работы и в форме теплоты. Энергия механического движения может превращаться в энергию теплового движения и наоборот. При этих превращениях должен соблюдаться закон сохранения и превращения энергии, чем, по существу, применительно к термодинамическим процессам и является первое начало термодинамики, установленное в результате обобщения многовековых опытных данных.

в идеальном газе взаимная потенциальная энергия молекул равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия, отнесенная к одному молю газа, будет равна сумме кинетических энергий Na молекул:

(50.1)

Внутренняя энергия для произвольной массы т газа.

где М — молярная масса, — количество вещества


 

А также другие работы, которые могут Вас заинтересовать

19024. Зависимость средних от времени. Интегралы движения. Законы сохранения и симметрии. Сохранение четности 614 KB
  Лекция 6 Зависимость средних от времени. Интегралы движения. Законы сохранения и симметрии. Сохранение четности Эволюция квантовой системы во времени определяется временным уравнением Шредингера 1 Поскольку это уравнение является уравнением первого пор...
19025. Общие свойства стационарных состояний одномерного движения для дискретного спек-тра. Квантование энергии в потенциале притяжения. Осцилляционная теорема 1.32 MB
  Лекция 7 Общие свойства стационарных состояний одномерного движения для дискретного спектра. Квантование энергии в потенциале притяжения. Осцилляционная теорема Пусть потенциальная энергия частицы зависит только от координаты : Тогда поскольку потенциальн
19026. Бесконечно глубокая прямоугольная потенциальная яма. Спектр, стационарные состоя-ния, разложения по собственным функциям гамильтониана, средние 434.5 KB
  Лекция 8 Бесконечно глубокая прямоугольная потенциальная яма. Спектр стационарные состояния разложения по собственным функциям гамильтониана средние Пусть потенциальная энергия частицы равна бесконечно глубокая потенциальная яма шириной см. рисунок. Най...
19027. Гармонический осциллятор. Уровни энергии и волновые функции (решение в виде ряда) 615.5 KB
  Лекция 9 Гармонический осциллятор. Уровни энергии и волновые функции решение в виде ряда Одномерным гармоническим осциллятором называется частица движущаяся в потенциале где масса частицы число имеющее размерность сек1 в случае классического движения ча
19028. Гармонический осциллятор. Уровни энергии и волновые функции (решение с помощью операторов рождения и уничтожения) 1.04 MB
  Лекция 10 Гармонический осциллятор. Уровни энергии и волновые функции решение с помощью операторов рождения и уничтожения Сегодня мы рассмотрим другой способ решения задачи о гармоническом осцилляторе. Вопервых этот способ и сам по себе поучительный а вовторых ...
19029. Вычисления с осцилляторными функциями 156 KB
  Лекция 11 Вычисления с осцилляторными функциями В различных задачах связанных с гармоническим осциллятором приходится вычислять интегралы типа или 1 где собственные функции гамильтониана осциллятора везде в этой лекции под будет подразумеваться б...
19030. Общие свойства стационарных состояний одномерного движения в случае непрерывного спектра. Прохождение потенциальных барьеров 334 KB
  Лекция 12 Общие свойства стационарных состояний одномерного движения в случае непрерывного спектра. Прохождение потенциальных барьеров Рассмотрим теперь решения уравнения Шредингера отвечающие непрерывному спектру собственных значений. Эти решения не затухают п...
19031. Момент импульса: операторы, коммутационные соотношения, решение уравнений на собственные значения 2.33 MB
  Лекция 13 Момент импульса: операторы коммутационные соотношения решение уравнений на собственные значения В классической механике момент импульса частицы определяется как поэтому моменту импульса в квантовой механике отвечает оператор 1 где и опер
19032. Момент импульса: матричная теория 280 KB
  Лекция 14 Момент импульса: матричная теория Получим собственные значения операторов проекции и квадрата момента другим способом. Этот способ основан только на коммутационных соотношениях между операторами момента и не использует явные выражения для самих оператор