74789

Второе начало термодинамики. Его статистический смысл

Доклад

Физика

Второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так что энтропия системы при этом возрастает.

Русский

2015-01-05

32 KB

0 чел.

29.Второе начало термодинамики. Его статистический смысл.

второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Его статистический смысл 

Формула Больцмана позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Можно довольно просто доказать (предоставим это читателю) эквивалентность формулировок Кельвина и Клаузиуса. Кроме того, показано, что если в замкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивалентность формулировки Клаузиуса (а следовательно, и Кельвина) и статистической формулировки, согласно которой энтропия замкнутой системы не может убывать.

В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной. Рассматривая Вселенную как замкнутую систему и применяя к ней второе качало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся — наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная.


 

А также другие работы, которые могут Вас заинтересовать

22674. Хвильові властивості частинок. Хвилі де Бройля 42 KB
  Хвилі де Бройля. Згідно гіпотези де Бройля для частинки речовини виконується співвідношення: E= =2 p=mV – імпульс частинки  довжина хв. де Бройля співвідношення де Бройля.де Бройля що описує вільний рух матеріальної частинки має вид : А – амплітуда плоскої монохроматичної хвилі радіус вектор частинки t – час.
22675. Рівняння Шредінгера. Інтерпретація хвильової функції 65.5 KB
  В квантовій механіці рівняння Шредінгера відіграє ту ж роль що і рівняння руху Ньютона в класичній механіці і рівняння Максвела в електродинаміці.Розглянемо тримірне хвильове рівняння і застосуємо його до хвиль де Броля. Найбільш важливим частковим випадком рішення хвильового рівняння є рішення виду: 2. Оскільки [потенціальна енергія ] рівняння 3 набуває вигляду стаціонарне рівняння Шреденгера оскільки вважалося що а значить і не залежать від часу.
22676. Співвідношення невизначеності Гейзенберга та приклади його проявів 63.5 KB
  Дві фізичні величини не можуть мати одночасно певні значення в жодному стані якщо їх оператори не комутують. В довільному стані фізичні величини відповідні цим операторам мають середнє значення визначені інтегралами: . З цієї формули випливає що якщо в деякому стані імпульс має певне значення =0 то координата х в цьому стані невизначена зовсім і навпаки. Згідно отриманій нерівності мікрочастинка не може знаходитись у стані строгого спокою який характеризується значеннями .
22677. Енергетичний спектр атома водню. Правила відбору 67 KB
  Сукупність спектральних ліній – спектральні серії. Пізніше були досліджені серії в ультрафіолетовій і інфракрасній обл. Перша лінія кожної серії відповідає мінімальному значеню n і має мінімальну частоту. По мірі збільшення n лінії кожної спектральної серії згущуються частота їх зростає.
22678. Хвильові функції. Системи тотожних частинок. Принцип Паули 65.5 KB
  Системи тотожних частинок. Вони тотожні є симетрія: при перестановці місцями частинок не змінюється. Нехай оператор перестановки частинок: ; Т. Для N – частинок N парних перестановок; оператор перестановок .
22679. Розподіл Фермі-Дірака і Бозе-Ейнштейна 132 KB
  Бозони – частинки з цілим або або нульовим спіном можуть знаходитись в межах даної системи в однаковому стані і в обмеженій кількості. Тоді енергія системи ; число част в му стані. що знаходяться в стані. Нехай номер енергетичного рівня; кратність його виродження число станів на му рівні що мають одне значення енергії тоді ; позначимосереднє число частинок в одному стані.
22680. Фізичне пояснення періодичної системи елементів 41.5 KB
  При заданому n : = 0 sоболонка 1pоболонка 2dоболонка 3fоболонка. S – оболонка – 2 ; р – оболонка – 221=6 d – оболонка – 10 . Якщо оболонка містить максимальну кількість е то вона заповнена ns2 np6 nd10 nf14 Період. іонів n 1 2 3 4 5 оболонка K L M N O макс.
22681. Атоми у зовнішніх полях. Ефект Штарка 507.5 KB
  Ефект Штарка Явище розщеплення в електричному полі енергетичних рівнів і пов’язане з ним розщеплення спектральних ліній називають ефектом Штарка. Розщеплення рівнів спостерігається як в однорідних так і в неоднорідних електричних полях зі складною просторовою конфігурацією.Наявність електричного поля що змінюється з часом також призводить до розщеплення рівнів енергії.Енергетична віддаль між компонентами розщеплення рівня в однорідному електричному полі росте зі збільшенням його напруженості.
22682. Атоми у зовнішніх полях. Ефект Зеємана 340.5 KB
  Суть: розщеплення спектральних ліній обумовлене взаємодією атомів з магнітним полем. Розщеплення спектральних ліній в магнітному полі є наслідком розщеплення енергетичних рівнів. простий ефект : правила відбору: три лінії:лінія двікомпоненти Складний ефект: розглянемо основний і перший збуджений...