74798

Реальные газы. Уравнение Ван-дер-Ваальса. Критические параметры

Доклад

Физика

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия голландский физик И. Учет собственного объема молекул. Наличие сил отталкивания которые противодействуют проникновению в занятый молекулой объем других молекул сводится к тому что фактический свободный...

Русский

2015-01-05

51.5 KB

2 чел.

38.Реальные газы. Уравнение Ван-дер-Ваальса. Критические параметры

При рассмотрении реальных газов — газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях 10–9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837—1923) вывел уравнение состояния реального газа. Ван-дер-Ваальсом в уравнение Клапейрона — Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm, а Vmb, где b объем, занимаемый самими молекулами.

Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d, т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в расчете на одну молекулу.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

(61.1)

где а — постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm молярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):

(61.2)

Для произвольного количества вещества v газа (v=m/M) с учетом того, что V=vVm, уравнение Ван-дер-Ваальса примет вид

При высоких температурах (T > Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре Tк на изотерме имеется лишь одна точка перегиба К.

Эта изотерма называется критической, соответствующая ей температура Tк — критической температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими параметрами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.


 

А также другие работы, которые могут Вас заинтересовать

1078. Общая характеристика турбоустановок ТЭС и АЭС 1005 KB
  Классификация электрических станций. Обозначения паровых турбин. Основные этапы развития теплоэнергетики и турбостроения. Общее знакомство с паровой турбиной ТЭС. Компоновка тепловой электрической станции.
1079. Тепловой цикл паротурбинной установки и показатели экономичности ТЭС. Особенности турбоустановок АЭС 394.5 KB
  Тепловой цикл паротурбинной установки ТЭС и показатель его термодинамической эффективности. Энергетические показатели тепловой электростанции и общий баланс теплоты и мощности для ее энергоблоков. Абсолютные и относительные показатели экономичности турбин и турбоустановок. Расходы пара, теплоты и топлива для паротурбинной установки.
1080. Роль промежуточного перегрева водяного пара в турбоустановках ТЭС. Регенеративный подогрев питательной воды. Комбинированная выработка теплоты и электроэнергии на ТЭЦ 336.5 KB
  Промежуточный перегрев водяного пара в паротурбинных установках. Тепловая схема ПТУ с промежуточным перегревом водяного пара. Регенеративный подогрев питательной воды в турбоустановках. Комбинированная выработка теплоты и электрической энергии на ТЭЦ.
1081. Процесс расширения пара в турбинной ступени 370 KB
  Основные уравнения и формулы, используемые для расчета движения водяного пара в проточной части турбинных ступеней. Конструкция турбинной ступени осевого типа и процессы преобразования энергии в ней. Тепловая диаграмма процесса расширения в турбинной ступени. Степень реактивности турбинной ступени.
1082. Мощность и экономичность турбинных ступеней 443.5 KB
  Усилия в турбинной ступени и ее мощность. Относительный лопаточный КПД ступени. Двухвенечные ступени паровых турбин. Процесс расширения в проточной части двухвенечной ступени.
1083. Турбинные решетки и их выбор 3.25 MB
  Геометрические характеристики турбинных решеток. Газодинамические и режимные характеристики турбинных решеток. Маркировка турбинных решеток и их формирование. Зависимости для определения коэффициентов потерь сопловой решетки.
1084. Относительный внутренний КПД турбинной ступени 765.5 KB
  Потери трения диска и лопаточного бандажа. Потери при парциальном подводе водяного пара в турбинную ступень. Потери от утечек в турбинной ступени. Лабиринтовые уплотнения. Потери от влажности водяного пара.
1085. Расчет турбинных ступеней. Методика расчета турбинной ступени 426.5 KB
  Выбор исходных данных и параметров при расчете турбинной ступени. Методика расчета турбинной ступени. Процесс расширения водяного пара в турбинной ступени. Схема отклонения потока в косом срезе сопловой решетки. Особенности расчета турбинных ступеней.
1086. Особенности расчета и проектирования ступеней с длинными лопатками 499 KB
  Уравнения радиального равновесия. Законы профилирования турбинных лопаток. Закон постоянного профиля сопловых и рабочих лопаток по высоте ступени. Примеры исполнения лопаток паровых турбин.