74798

Реальные газы. Уравнение Ван-дер-Ваальса. Критические параметры

Доклад

Физика

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия голландский физик И. Учет собственного объема молекул. Наличие сил отталкивания которые противодействуют проникновению в занятый молекулой объем других молекул сводится к тому что фактический свободный...

Русский

2015-01-05

51.5 KB

2 чел.

38.Реальные газы. Уравнение Ван-дер-Ваальса. Критические параметры

При рассмотрении реальных газов — газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях 10–9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837—1923) вывел уравнение состояния реального газа. Ван-дер-Ваальсом в уравнение Клапейрона — Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm, а Vmb, где b объем, занимаемый самими молекулами.

Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d, т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в расчете на одну молекулу.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

(61.1)

где а — постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm молярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):

(61.2)

Для произвольного количества вещества v газа (v=m/M) с учетом того, что V=vVm, уравнение Ван-дер-Ваальса примет вид

При высоких температурах (T > Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре Tк на изотерме имеется лишь одна точка перегиба К.

Эта изотерма называется критической, соответствующая ей температура Tк — критической температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими параметрами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.


 

А также другие работы, которые могут Вас заинтересовать

19241. ТИПЫ ДРЕЙФОВЫХ ДВИЖЕНИЙ ЧАСТИЦ В ПЛАЗМЕ ТЕРМОЯДЕРНЫХ УСТАНОВОК ТИПА ТОКАМАК 850 KB
  Лекция № 4. типы дрейфовых движений частиц в плазме термоядерных установок типа токамак Дрейф в неоднородном поле центробежный и градиентный поляризационный дрейф тороидальный дрейф и вращательное преобразование тороидальной магнитной конфигурации Ра...
19242. АДИАБАТИЧЕСКИЕ ИНВАРИАНТЫ ДЛЯ ДВИЖЕНИЯ ЧАСТИЦ В МАГНИТНОМ ПОЛЕ 967.5 KB
  Лекция 5 Адиабатические инварианты для движения частиц в магнитном поле Инвариантность магнитного момента частицы во времени инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном пол инвариантность величины vl ...
19243. ПРИМЕНЕНИЕ АДИАБАТИЧЕСКОГО И ДРЕЙФОВОГО ПРИБЛИЖЕНИЙ. ОТКРЫТЫЕ МАГНИТНЫЕ ЛОВУШКИ 716.5 KB
  Лекция 6 Применение адиабатического и дрейфового приближений. Открытые магнитные ловушки. Квазистационарные открытые системы: пробкотрон. Желобковая неустойчивость. Принцип Min.B. Плазменные центрифуги. Зеркальные ловушки пробкотроны На использовании ад
19244. НЕОКЛАССИЧЕСКАЯ ДИФФУЗИЯ В МАГНИТНОМ ПОЛЕ ТОКАМАКА. ПРОВОДИМОСТЬ ПЛАЗМЫ В МАГНИТНОМ ПОЛЕ 608.5 KB
  Лекция 7 Неоклассическая диффузия в магнитном поле токамака. Проводимость плазмы в магнитном поле. Пролетные и запертые частицы. Три режима потерь банановый плато и режим ПфиршаШлютера бомовская диффузия соотношение D и D неоклассическая диэлектрич
19245. ИСПОЛЬЗОВАНИЕ МГД ПРИБЛИЖЕНИЯ ДЛЯ АНАЛИЗА ПЛАЗМЕННЫХ КОНФИГУРАЦИЙ В ТЕРМОЯДЕРНЫХ УСТАНОВКАХ 178.5 KB
  Лекция 8 Использование МГД приближения для анализа плазменных конфигураций в термоядерных установках Уравнения МГД обобщенный закон Ома диффузия магнитного поля в плазму магнитное давлении параметр удержания . Идеальная одножидкостная гидродинамика плаз
19246. РАВНОВЕСИЕ ПЛАЗМЫ В ТЕРМОЯДЕРНЫХ УСТАНОВКАХ. ИМПУЛЬСНЫЕ СИСТЕМЫ. Z-ПИНЧИ 5.75 MB
  Лекция 9 Равновесие плазмы в термоядерных установках. Импульсные системы. Zпинчи. Проблемы равновесия плазменных конфигураций МГДустойчивость плазмы лежащей на магнитном поле устойчивость скинированного пинча. Важный круг задач в которых с успехом примен...
19247. КОЛЕБАНИЯ И ВОЛНЫ В ПЛАЗМЕ ТЕРМОЯДЕРНЫХ УСТАНОВОК 1.34 MB
  Лекция 10 Колебания и волны в плазме термоядерных установок Использование явления отсечки низкочастотной поперечной волны для диагностики плазмы колебания и волны в незамагниченной плазме; аналогия и различия с газом; заряженность частиц и различие масс дисперс...
19248. КОЛЕБАНИЯ И ВОЛНЫ В ПЛАЗМЕ В МАГНИТНОМ ПОЛЕ ТЕРМОЯДЕРНЫХ УСТАНОВОК 2.65 MB
  Лекция 11 Колебания и волны в плазме в магнитном поле термоядерных установок Теорема вмороженности магнитногополя. Колебания и волны в замагниченной плазме: магнитный звук скорость Альфена гибридные частоты магнитогидродинамические волны гиротропность п
19249. НЕУСТОЙЧИВОСТИ ПЛАЗМЫ В ТЕРМОЯДЕРНЫХ УСТАНОВКАХ 1.24 MB
  Лекция 12 Неустойчивости плазмы в термоядерных установках Неустойчивость Релея Тейлора неустойчивость Кельвина Гельмгольца разрывная неустойчивость перезамыкание силовых линий магнитного поля неустойчивости токовых систем Z пинчей перетяжки винтова...