74803

Механика и ее разделы. Кинематика вращательного движения материальной точки. Связь между векторами линейных и угловых скоростей и ускорений

Доклад

Физика

Вращательным движением абсолютно твердого тела называют такое движение при котором все точки тела движутся в плоскостях перпендикулярных к неподвижной прямой называемой осью вращения и описывают окружности центры которых лежат на этой оси роторы турбин генераторов и двигателей.

Русский

2015-01-05

74 KB

1 чел.

3. Механика и ее разделы. Кинематика вращательного движения материальной точки. Связь между векторами линейных и угловых скоростей и ускорений.

а)Механика — часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение. Механическое движение — это изменение с течением времени взаимного расположения тел или их частей. Механика делится на три раздела: I) кинематику; 2) динамику; 3) статику.Кинематика изучает движение тел, не рассматривая причины, которые это движение обусловливают.Динамика изучает законы движения тел и причины, которые вызывают или изменяют это движение.Статика изучает законы равновесия системы тел. Если известны законы движения тел, то из них можно установить и законы равновесия. Поэтому законы статики отдельно от законов динамики физика не рассматривает. Основными понятиями в механике, физике и естествознании в целом являются пространство и время. Всякое материальное тело имеет объем, т.е. пространственную протяженность. Время выражает последовательность состояний материи, составляющих любой процесс, любое движение. Таким образом, пространство и время представляют собой наиболее общие формы существования материи.

б)Вращательным движением абсолютно твердого тела называют такое движение, при котором все точки тела движутся в плоскостях, перпендикулярных к неподвижной прямой, называемой осью вращения, и описывают окружности, центры которых лежат на этой оси (роторы турбин, генераторов и двигателей).

в)Угловой скоростью вращения называется вектор, численно равный первой производной угла поворота тела по времени и направленный вдоль оси вращения по правилу правого винта: Единица измерения угловой скорости радиан в секунду (рад/с). Таким образом, вектор  определяет направление и быстроту вращения. Если , то вращение называется равномерным. При равномерном вращении его можно охарактеризовать периодом вращения Т – временем, за которое точка тела совершает один полный оборот, т.е. поворачивается на угол 2π:

Число полных оборотов, совершаемых телом при равномерном движении по окружности, в единицу времени называется частотой вращения:откуда

Для характеристики неравномерного вращения тела вводится понятие углового ускорения. Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени: При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора угловой скорости при ускоренном движении вектор  направлен в ту же сторону, что и  , и в противоположную сторону при замедленном вращении .рис 1,7.

Выразим тангенциальную и нормальную составляющие ускорения точки А вращающегося тела через угловую скорость и угловое ускорение:   

В случае равнопеременного движения точки по окружности (): , где начальная угловая скорость.

Связь между линейными (длина пути s, пройденного точкой по окружности радиуса R, линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми характеристиками (угол поворота φ, угловая скорость ω, угловое ускорение ε) выражается следующими формулами:.


 

А также другие работы, которые могут Вас заинтересовать

22417. Україна у Другій Світовій війні та першому повоєнному десятиріччі (1939 – 1955 рр.) 49 KB
  Напередодні Другої світової війни населення Західної України становило близько 7 мли осіб. На всіх цих землях панувала іноземна адміністрація, яка проводила колонізаційну політику. Це викликало обурення українців, призводило до спротиву офіційним властям
22418. Сравнения функций. Свойства функций, непрерывных на отрезке 218.5 KB
  Если предел 1 равен 0 то функция fx называется бесконечно малой более высокого порядка чем gx при x  a а функция gx называется бесконечно малой более низкого порядка чем fx при x  a. Если предел 1 равен   то функция fx является бесконечно малой болей низкого порядка чем gx при x  a а gx функция является бесконечно малой более высокого порядка чем fx при x  a. Если предел 1 равен   то функция является бесконечно большой при x  a. Тогда по свойству бесконечно малых функция бесконечно малая при...
22419. Производная и дифференциал функции одной переменной 224 KB
  Производная и дифференциал функции одной переменной Приращение аргумента и приращение функции. Понятие функции дифференцируемой в точке. Дифференциал функции. Производная функции.
22420. Теоремы о дифференцируемых функциях. Производные и дифференциалы высших порядков 246.5 KB
  Производные и дифференциалы высших порядков Возрастание и убывание функции в точке. Точки экстремума функции. Линеаризация функции. Приближенное вычисление значений функции.
22421. Правила Лопиталя. Формула Тейлора 245 KB
  Формула Тейлора. Формула Тейлора с остаточным членом в форме Пеано. Формула Тейлора с остаточным членом в форме Лагранжа. Разложение основных элементарных функций по формуле Тейлора.
22422. Исследование функции с помощью производной 216 KB
  Исследование функции с помощью производной. Возрастание и убывание функции на промежутке. Точки экстремума функции. Нахождение наибольшего и наименьшего значения функции на отрезке.
22423. Неопределенный интеграл 126.5 KB
  Функция Fx называется первообразной функцией или просто первообразной для функции fx на интервале a b если функция Fx дифференцируема в любой точке x  a b и имеет производную F ' x равную fx т. Если F1x и F2x две первообразные функции fx на интервале a b то всюду на интервале a b F2x = F1x С где С некоторая постоянная. Пусть F1x и F2x две первообразные функции fx на a b. Если F1x первообразные функции fx на интервале a b то любая ее первообразная F2x имеет вид F2x =...
22424. Многочлены и рациональные дроби 259 KB
  Многочлены и рациональные дроби План Комплексные числа. Комплексносопряженные числа. Модуль и аргумент комплексного числа. Тригонометрические формы комплексного числа.
22425. Методы интегрирования 115.5 KB
  Он упрощается в следующих трех случаях: Функция Rx y нечетная относительно x Rx y = Rx y Rsin xcos x = Rsin xcos x sin x входит в нечетной степени в Rsin xcos x = R1sin2 xcos x sin x. Делаем подстановку t = cos x и получим . Функция Rx y нечетная относительно y Rx y = Rx y Rsin xcos x = Rsin xcos x cos x входит в нечетной степени в Rsin xcos x = R1sin xcos2 x cos x. Функция Rx y четная относительно x и y Rx y = Rx y Rsin xcos x = Rsin x cos x.