74804

Первый закон Ньютона. Инерция, масса. Инерциальные системы отсчета. Механический принцип относительности. Преобразование координат Галилея. Теорема сложения скоростей и независимость массы от скорости в классической механике

Доклад

Физика

Механическое движение относительно и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета а те системы по отношению к которым он выполняется называются инерциальными системами отсчета.

Русский

2015-01-05

58.95 KB

1 чел.

4 Первый закон Ньютона. Инерция, масса. Инерциальные системы отсчета. Механический принцип относительности. Преобразование координат Галилея. Теорема сложения скоростей и независимость массы от скорости в классической механике.

- Первый закон Ньютона-всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор пока взаимодействие со стороны других тел не заставит изменить ее это состояние.

-Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при отсутствии взаимодействия на него других тел называется инерцией. Поэтому первый закон Ньютона называют также законом инерции.

Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета. Система отсчета, движущаяся по отношению к инерциальной системе отсчета с ускорением, является неинерциальной, и в ней не выполняются ни закон инерции, ни второй закон Ньютона, ни закон сохранения импульса.

Инерциальной системой отсчета является такая, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы.С очень высокой степенью точности инерциальной можно считать гелиоцентрическую (звездную ) систему отсчета (начало координат находится в центре Солнца, а оси проведены в направлении определенных звезд). Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его массы).

- Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. масса тела считается постоянной величиной только в классической механике Ньютона, изучающей движение тел со скоростями, небольшими по сравнению со скоростью света (). В современной физике установлено, что масса тела увеличивается с увеличением скорости его движения по закону:

.

В классической механике из-за независимости массы от скорости импульс системы можно выразить через скорость ее центра масс.

Если системы отсчета движутся относительно друг друга равномерно и прямолинейно и в одной из них справедливы законы динамики Ньютона, то эти системы являются инерциальными. Во всех инерциальных системах отсчета законы классической динамики имеют одинаковую форму (инвариантны); в этом состоит суть механического принципа относительности или принципа относительности Галилея.

Для доказательства этого принципа рассмотрим две системы отсчета: инерциальную систему К (с координатами x, y, z), которую условно будем считать неподвижной и подвижную систему (с координатами ), движущуюся относительно К равномерно и прямолинейно со скоростью = const. Примем, что в начальный момент времени t = 0 начала О и обеих систем координат совпадают. Расположение систем координат в произвольный момент времени t имеет вид, изображенный на рис. 5.1. Скорость направлена вдоль прямой , а радиус-вектор, проведенный из точки О в точку , равен Координаты произвольной материальной точки А в неподвижной и подвижной системах отсчета определяются радиусами-векторами и , причем(5.1)В проекциях на оси координат векторное уравнение (5.1) записывается в виде, называемом преобразованиями Галилея: В частном случае, когда система К' движется со скоростью т вдоль положительного направления оси х системы К (в начальный момент времени оси координат совпадают), преобразования координат Галилея имеют вид

В классической механике предполагается, что ход времени не зависит от относительного движения систем отсчета, т. е. к преобразованиям (34.2) можно добавить еще одно уравнение:

 

Продифференцировав выражение получим уравнение(34.4)которое представляет собой правило сложения скоростей в классической механике. Ускорение в системе отсчета К

Таким образом, ускорение точки А в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково: (34.5)

Следовательно, если на точку А другие тела не действуют (а=0), то, согласно (34.5), и а'=0, т. е. система К' является инерциальной (точка движется относительно нее равномерно и прямолинейно или покоится).Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. являются инвариантными по отношению к преобразованиям координат. Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.


 

А также другие работы, которые могут Вас заинтересовать

84555. Тонус артеріол і венул, його значення. Вплив судинно-рухових нервів на тонус судин 45.26 KB
  Вплив судиннорухових нервів на тонус судин. Механізми регуляції регуляції тонуса судин Місцеві Центральні Нервові рефлекси Гуморальні гормони Міогенні Гуморальні Тканинні гормони Парасимпатичні Метаболіти Симпатичні Регуляція кровотоку в окремих регіонах Регуляція системного кровообігу Тонус судин – певна ступінь напруження стінки судин яка пов’язана із скороченням гладеньких м’язів які входять до складу судинної стінки. Тонус більш виражений в артеріальних судинах ніж у венозних артеріальні судини мають більш виражений шар гладеньких...
84556. Міогенна і гуморальна регуляція тонусу судин. Роль ендотелія судин в регуляції судинного тонусу 45.08 KB
  Роль ендотелія судин в регуляції судинного тонусу. Базальний тонус судин – той який притаманний судинам за відсутності нервових та гуморальних впливів вивчати можна на ізольованій судині. Кількість гладеньких м’язів що здатні до автоматії більша в дистальних судинах ніж в проксимальних; більша в артеріальних судинах ніж у венозних.
84557. Гемодинамічний центр. Рефлекторна регуляція тонусу судин. Пресорні і депресорні рефлекси 44.84 KB
  Гемодинамічний центр ГДЦ розташований в довгастому мозку хоча в регуляції системного кровообігу беруть участь всі рівні ЦНС від кори ГМ до спинного мозку. В структурі ГДЦ виділяють: пресорний відділ ПВ депресорний відділ ДВ еферентне парасимпатичне ядро блукаючого нерва Х. Третім структурним елементом ГДЦ є парасимпатичне ядро блукаючого нерва. Аферентні зв’язки ГДЦ.
84558. Рефлекторна регуляція кровообігу при зміні положення тіла у просторі (ортостатична проба) 45.13 KB
  Регуляція САТ відбувається: за відхиленням – у відповідь на зміну САТ вмикаються регуляторні механізми які повертають його до вихідного рівня саморегуляція або регуляція на основі негативного зворотнього зв’язку; така регуляція має місце при необхідності стабілізувати САТ на певному рівні: за збуренням – збурення дія якогось зовнішнього по відношенню до системи кровообігу фактора потребує зміни САТ в певному напрямку; інформація про дію збурення передається в КП ГДЦ по каналу зовнішнього зв’язку ГДЦ виробляє керуючий сигнал що...
84559. Регуляція кровообігу при м’язовій роботі 45.45 KB
  Підвищення САТ є результатом рефлексу з пропріорецепторів працюючих м’язів активація ПВ ГДЦ та гальмування ядра блукаючого нерва збільшення ЧСС та СО ріст ХОК ріст САТ; звуження артеріальних та венозних судин також зумовлюють ріст САТ. Рефлекс з пропріорецепторів працюючих м’язів є основним але не єдиним механізмом розвитку пресорної реакції при м’язовій роботі. Регуляція кровотоку в м’язах при фізичній роботі спрямована на забезпечення його розширення зменшення опору цих судин збільшення об’ємної швидкості кровотоку через працюючі...
84560. Особливості кровообігу у судинах головного мозку і його регуляція 42.75 KB
  Унікальною особливістю кровообігу ГМ є те що воно відбувається в замкнутому просторі непіддатливого черепа та перебуває в динамічному взаємозв’язку з кровообігом спинного мозку та переміщенням спинномозкової рідини. Величина мозкового кровообігу відносно постійна складає 750 мл хв 15 від ХОК маса мозку – 2 від маси тіла. Кровотік в мозку нерівномірний – краще кровопостачаються ділянки сірої речовини бо тут найвищий рівень обміну речовин.
84561. Особливості кровообігу у судинах серця i його регуляція 43.46 KB
  Високий рівень кровотоку в стані спокою – 250 мл хв 5 від ХОК маса серця – 05 від маси тіла. Високий тонус вінцевих судин в стані спокою незважаючи на високий рівень метаболізму – ця умова забезпечує здатність вінцевих судин до розширення та збільшення кровотоку під час посиленої діяльності 5. Залежність кровотоку від фаз СЦ: він знижується під час систоли артерії стискуються міокардом та збільшується під час діастоли. Головна особливість в регуляції серцевого кровотоку полягає у перевазі місцевих механізмів над центральними.
84562. Особливості легеневого кровообігу його регуляція 43.31 KB
  В легенях розрізняють дві групи судин: одні виконують трофічну функцію живлять тканину легень бронхів та відносяться до судин великого кола кровообігу інші – функцію газообміну та відносяться до судин малого кола. Далі мова піде про судини малого кола кровообігу. Артеріальні судини за своїми властивостями та будовою нагадують венозні судини – вони легко розтягуюються та реагують зміною об’єму на зміну трансмурального тиску. В артеріальних судинах легень відсутні спеціальні судини опору.
84563. Механізми лімфоутворення. Рух лімфи посудинах 43.75 KB
  Рух лімфи посудинах. Утворення лімфи відбувається за участі судин гемомікроциркулярного русла. Утворення лімфи. Головну роль в утворенні лімфи відіграють лімфатичні капіляри: на відміну від кровоносних вони сліпі більш широкі у них ширші міжклітинні щілини відсутня базальна мембрана проникність стінок лімфатичних капілярів дуже висока.