75374

.КОЛЬЦЕВЫЕ ЛАЗЕРНЫЕ ГИРОСКОПЫ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Чтобы измерять малые угловые скорости, используют частотную подставку. С помощью виброподвеса 10 возбуждаются угловые колебания кольцевого лазера относительно корпуса ЛГ.

Русский

2015-01-12

3.27 MB

30 чел.

КОЛЬЦЕВЫЕ ЛАЗЕРНЫЕ ГИРОСКОПЫ

Один из первых кольцевых лазеров с трехзеркальным резонатором

Современный трехзеркальный кольцевой лазер (фирма Honeywell)

Современный четырехзеркальный кольцевой лазер гироскопа ЛГ-1

1 – ситалловый моноблок, 2 – аноды, 3 – холодный катод, 4,а – плоские зеркала оптического резонатора, 4,б – сферические зеркала оптического резонатора, 5 – фотодиод, предназначенный для регистрации информационного сигнала, 6 – фотодиоды системы автоматического регулирования периметра, 7 – смесительная призма, 8 – пьезоэлектрические преобразователи, регулирующие положения сферических зеркал, 9 – позиции для размещения геттера, 10 – кольцо для крепления виброподвеса. Газовое наполнение – смесь изотопов 3He:20Ne:22Ne = 32:1:1 с общим давлением 750 Па, суммарный ток газовых разрядов в обоих плечах– 1,2 мА. Периметр резонатора – 28 см, масштабный коэффициент K  6,95·105

Схема кольцевого лазерного гироскопа

          6                                             1       3                            5               

                                                       8                                9                               8

1 – ситалловый моноблок; 2 – аноды; 3 – холодный катод; 4 – зеркала резонатора; 5 – фотодиод для регистрации информационного сигнала; 6 – фотодиоды системы регулирования периметра; 7 – смесительная призма; 8 – пьезоэлектрические преобразователи, регулирующие положения сферических зеркал; 9 – датчик угловой скорости; 10 – виброподвес, 11 –каналы, внутри которых возбуждается активная среда; 12 – диафрагма для селекции поперечных мод.

Кольцевой лазер генерирует два пучка, распространяющиеся навстречу друг другу вдоль периметра резонатора. Вращение гироскопа вокруг оси, перпендикулярной плоскости резонатора, изменяет разность фаз ψ встречных волн (фазу Саньяка); скорость изменения разности фаз определяется угловой скоростью вращения :

,                                   (1)

здесь λ = 0,6328 мкм – длина волны излучения лазера, L – периметр резонатора, S – площадь квадрата, ограниченного лазерными лучами; K – масштабный коэффициент.

Формирование квадратурных сигналов

                                              1                    2

                              

                                   х

Распределение интенсивности лазерного излучения в плоскости фотодиода 5:  

,                                     (2)

Оптические сигналы, поступающие на секции фотодиода 5:

                          (3)

Равномерное вращение ЛГ и явление захвата

Уравнение (1) справедливо, если угловая скорость вращения намного больше порога синхронизации встречных волн (порога захвата) L. Явление синхронизации (захват, lock-in) типично для слабо связанных автогенераторов, настроенных на близкие частоты. В данном случае связь вызвана рассеянием лазерного излучения элементами кольцевого резонатора в направлении встречного луча. Причина – шероховатости на поверхностях зеркал 4 и на ограничивающих пучок участках диафрагмы 12.  

Модель, учитывающая связь встречных волн в ЛГ:

.                                   (4)

Порог захвата L зависит от шероховатости поверхности зеркал. Лазерные гироскопы ЛГ-1 имеют порог захвата в диапазоне 0,02 – 0,15 о/с (техническое требование – не хуже 0,03 о/с). Такие значения L достигаются, когда в направлении встречного пучка рассеивается порядка 10-12 от мощности излучения, падающего на зеркало.

Медленное равномерное вращение, w < wL, решение - постоянная разность фаз ψ = const, при которой правая часть (4) - ноль.

Слабая связь встречных волн из-за обратного рассеяния лазерного излучения внутри кольцевого резонатора приводит к нечувствительности гироскопа к малым угловым скоростям.

Если гироскоп вращается с угловой скоростью = const > wL:

.                    (5)

В пределе >> L (5) - линейная функция времени. В этом случае для измерения угловой скорости достаточно зарегистрировать частоту колебаний фототоков, а для идентификации направления вращения – разность фаз колебаний.

Квадратурные сигналы ЛГ

Когда угловая скорость близка к порогу захвата, без знания величины L выделить информацию о вращении невозможно.

Лазерный гироскоп с вибрационной частотной подставкой

Чтобы измерять малые угловые скорости , используют частотную подставку. С помощью виброподвеса 10 возбуждаются угловые колебания кольцевого лазера относительно корпуса ЛГ.

Угловая скорость кольцевого лазера:

,                                             (6)

где h – угловая скорость вращения корпуса ЛГ, d и f – амплитуда и частота подставки, соответственно. Амплитуда угловых около 2 угловых минут.

Один из квадратурных сигналов ЛГ с вибрационной подставкой

Переход от квадратурных сигналов к подсчету угловых перемещений осуществляется так же, как и в лазерных интерферометрах: сигналы преобразуются в импульсы, соответствующие изменению фазы Саньяка на радиан.

После выделения механического движения из квадратурных сигналов частотную подставку необходимо вычесть. Для регистрации колебаний кольцевого лазера относительно корпуса ЛГ служит электромагнитный датчик угловой скорости 9.

Частотные характеристики лазерного гироскопа

1 – идеальная характеристика, 2 – характеристика ЛГ с вибрационной подставкой, 3 – статическая характеристика при отсутствии подставки

Граница нечувствительности к равномерному вращению лазерного гироскопа с вибрационной частотной подставкой называется динамическим порогом захвата D. В случае  перемещения интерференционной картины отражают только колебания лазера и не реагируют на повороты корпуса. Связь динамического и статического порогов захвата:

.                                           (8)

Чтобы исключить систематическую погрешность, вызванную динамическим захватом, амплитуда колебаний ошумляется, а затем изменения фазы Саньяка усредняются во времени.

ЛАЗЕРНЫЕ ГИРОСКОПЫ

С МАГНИТООПТИЧЕСКИМ УПРАВЛЕНИЕМ

Оптическая схема неплоского кольцевого резонатора

В кольцевых резонаторах с неплоским контуром частота продольной моды зависит от поляризации волны. Моды таких резонаторов представляют собой волны, поляризованные по кругу. Существует разность частот для мод, поляризованных по правому и левому кругу. Разность частот зависит от угла излома контура резонатора .

Расщепление частот продольных мод неплоского кольцевого резонатора в зависимости от направления круговой поляризации волны: Л – по левому кругу, П – по правому кругу

Расщепление частотной зависимости коэффициента усиления

активной среды лазера в продольном магнитном поле (эффект Зеемана)

1 – магнитное поле отсутствует, 2 – в магнитном поле для волны CCW, 3 – в магнитном поле для волны CW, 0 – частота лазерной генерации при отсутствии магнитного поля, CCW , CW - частоты встречных волн при наложении магнитного поля;

Разность частот встречных волн, возникающая при наложении на активную среду магнитного поля, играет роль частотной подставки в ЛГ.

Для достижения погрешности измерения угловой скорости вращения 1о/час, необходимо стабилизировать частоту подставки с точностью 0,3 Гц (10-6), что на практике достигнуто быть не может.

МАГНИТООПТИЧЕСКАЯ ПОДСТАВКА НА ОСНОВЕ

ЗНАКОПЕРЕМЕННОЙ ПЕРИОДИЧЕСКОЙ МОДУЛЯЦИИ

Если использовать переменное магнитное поле, Л и П контура частотной зависимости коэффициента усиления активной среды будут периодически меняться местами. Частота модуляции fb = 200 – 1000 Гц.  Знак частотной подставки периодически изменяется; высокая стабильность подставки должна обеспечиваться лишь на периоде колебаний.

Частотная характеристика зеемановского ЛГ

со знакопеременной подставкой

Недостаток: высокая чувствительность к внешнему магнитному полю (например, к магнитному полю Земли)

Характеристики современных гироскопических датчиков 

(Estimation of Research & Technology Organization under NATO)

ppm – part per million (10-6)

текущее состояние

ближайший прогноз


 

А также другие работы, которые могут Вас заинтересовать

42875. Процес доставки товару до споживача, методом потенціалів 469.5 KB
  Логістика — це процес управління матеріальним, фінансовим та кадровим потоками, а також необхідним інформаційним потоковим процесом для прискорення фізичного розподілу та мінімізації загальних витрат під час постачання, виробництва і збуту товарів з метою задоволення потреб споживачів.
42876. Підвищення ефективності організації транспортного процесу при перевезенні партіонних вантажів 576.67 KB
  Для досягнення мети необхідно вирішити наступні задачі: сформувати маршрути перевезення партіонних вантажів; визначити техніко експлуатаційні показники роботи автомобілів на маршрутах; розрахувати годинну продуктивність автомобілів і собівартість перевезення вантажів; встановити закон розподілу розмірів партій вантажів які предявлені до перевезення; розрахувати чисельні характеристики замкнутої пуассонівської системи масового обслуговування яка представляє собою спільну роботу автотранспортних і навантажувальних ...
42878. Графы и алгоритмы на графах. Решение обыкновенных дифференциальных уравнений. Разработка программы для решения системы ОДУ, описывающей простейшую модель экосистемы (модель Лотка-Вольтерра). Методы оптимизации 1.58 MB
  Оптимизация как раздел математики существует достаточно давно. Оптимизация - это выбор, т.е. то, чем постоянно приходится заниматься в повседневной жизни. Термином "оптимизация" в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего или "оптимального" решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. По этому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.
42879. Создания простейшей экспертной системы 69.17 KB
  Если реакция системы не понятна пользователю то он может потребовать объяснения: CLIPS Первоначально аббревиатура CLIPS была названием языка С Lnguge Integrted Production System язык С интегрированный с продукционными системами удобного для разработки баз знаний и макетов экспертных систем. Теперь CLIPS представляет собой современный инструмент предназначенный для создания экспертных систем expert system tool. CLIPS состоит из интерактивной среды экспертной оболочки со своим способом представления знаний гибкого и мощного...
42880. Состояния международного туризма на современном этапе 84.24 KB
  Туризм – явление, известное каждому. Во все времена нашу планету пересекали многочисленные путешественники и первопроходцы. Но лишь недавно туризм возник как специфическая форма деятельности людей. Каждый из нас представляет себе туризм как отрасль, более или менее известную, поскольку все мы куда-то ездили и проводили отпуска вдали от дома. Туризм - сравнительно молодой феномен, имеющий, однако, корни, уходящие в древние времена.
42881. Поняття туризму. Класифікація, види і форми туризму 59.48 KB
  Термін туризм (tourism) першим вжив В. Жекмо в 1830 р. Слово «туризм» походить від французького «tour», що означає «прогулянка». До недавнього часу в різних країнах поняття «туризм», «турист» розумілися неоднаково. З розвитком туризму в сучасному світі, особливо міжнародного і з створенням міжнародних туристичних організацій, стало необхідним дати загальноприйняте визначення поняття «турист» і відповідно «туризм».
42882. SMS-Flooder 284.94 KB
  При атаках автоматизированных систем достаточно сложно определить предсказать уровень ущерба и риска который они могут предоставить. На основе вышеизложенного рассмотрим момент риска по формуле: Отсюда среднее значение ущерба для кривой риска будет равно Далее получим центральный момент риска: Откуда мы можем выразить второй центральный момент риска: Тогда среднеквадратичное отклонение будет иметь вид: Также оно может быть найдено относительно моды риска . Она может выражаться через решение следующего уравнения: Чтобы оценить ассиметрию...