75381

ХРОМАТИЧЕСКАЯ ДИСПЕРСИЯ В ОДНОМОДОВОМ ВОЛОКНЕ И УШИРЕНИЕ ПЕРЕДАВАЕМОГО ИМПУЛЬСА

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

В полосе прозрачности 850 нм более длинные волны распространяются с большей скоростью чем короткие например излучение на длине волны 865 нм распространяется в кварцевом стекле с большей скоростью чем излучение на длине волны 835 нм. Совсем наоборот происходит в полосе прозрачности 1550 нм: более короткие длины волн распространяются с большими скоростями чем более длинные излучение с длиной волны 1535 нм распространяется быстрее чем с длиной волны 1560 нм. Спектр оптического сигнала имеет конечную ширину ...

Русский

2015-01-12

113 KB

7 чел.

ХРОМАТИЧЕСКАЯ ДИСПЕРСИЯ В ОДНОМОДОВОМ ВОЛОКНЕ

И УШИРЕНИЕ ПЕРЕДАВАЕМОГО ИМПУЛЬСА

СИД излучает широкий спектр длин волн в диапазоне от 30 до 100 нм, а ЛД излучает спектральную линию шириной от 0,1 до 1,0 нм.

Существует одно интересное явление относительно скоростей распространения внутри оптоволокна. В полосе прозрачности 850 нм более длинные волны распространяются с большей скоростью, чем короткие (например, излучение на длине волны 865 нм распространяется в кварцевом стекле с большей скоростью, чем излучение на длине волны 835 нм). Совсем наоборот происходит в полосе прозрачности 1550 нм: более короткие длины волн распространяются с большими скоростями, чем более длинные (излучение с длиной волны 1535 нм распространяется быстрее, чем с длиной волны 1560 нм).

Спектр оптического сигнала

имеет конечную ширину

                                                 Уширение передаваемого импульса

Скорость распространения

волны зависит от ее частоты

Зависимость запаздывания импульса в волокне от длины волны

Коэффициент дисперсии:

,  [пс/(нмкм)]                                   (1)

Существует длина волны ZD, выше которой дисперсионный параметр D положителен, а ниже - отрицателен. Эта длина волны называется длиной волны нулевой дисперсии, она равна для чистого диоксида кремния 1276 нм. Ее значение может меняться в пределах 1270-1290 нм для оптического волокна, сердцевина и оболочка которого легируются для получения необходимого показателя преломления. Длина волны нулевой дисперсии для оптических волокон зависит также от диаметра сердечника и вклада шага показателя преломления в сечении волновода в полную дисперсию.

Рост ширины импульсов из-за дисперсии сопровождается

уменьшением пиковой мощности:

Увеличение длительности передаваемого импульса вследствие дисперсии :

    (2)

где Lдлина линии, а  - спектральная ширина импульса.

Произведение  (скорости передачи В на длину линии L) можно оценить из (2). Для одномодового волокна и при использовании лазерного источника, для которого  < 1 нм, получаем, что оно может превысить 1 Тбит/с на километр. Для его улучшения нужно использовать лазеры с шириной спектральной линии как можно уже. Доминирующей и в этом случае является хроматическая дисперсия.

Все стекло, включая используемое для производства оптоволокна, обладает материальной дисперсией, потому что его коэффициент преломления изменяется с длиной волны. Дополнительно к этому, когда одномодовое волокно вытягивается из стекла, геометрическая форма и профиль коэффициента преломления вносят существенный вклад в волновую зависимость скорости импульса, распространяющегося по волокну, т.е. в волноводную дисперсию.

Хроматическая дисперсия волокна = материальная дисперсия + волноводная         

                                                                       n()                              дисперсия

Институт IEEE определяет материальную дисперсию «как дисперсию, соотносимую с зависимостью длины волны от показателя преломления того материала, из которого сформирован волновод».

Причина появления волноводной дисперсии

Из-за частичного проникновения излучения в оболочку скорость распространения волны в волокне зависит от показателя преломления оболочки. Волна проникает внутрь оболочки на расстояние порядка длины волны. Поэтому оболочка в разной степени влияет на скорости распространения волн с разными длинами.

Волноводная дисперсия зависит от формы поперечного распределения показателя преломления

Хроматическая дисперсия в стандартном одномодовом волокне

Усилия по сдвигу длины волны нулевой дисперсии в область окна прозрачности минимальных потерь 1550 нм привели к успеху. Такое волокно называется волокном со сдвигом дисперсии. Необходимый сдвиг дисперсии был получен путем манипуляции параметрами волноводной дисперсии, учитывая, что последняя зависит от радиуса сердцевины а и разницы показателей преломления. Можно так отрегулировать вклад волноводной дисперсии, что общая дисперсия D будет относительно мала в довольно широком диапазоне длин волн от 1300 до 1600 нм. Этот тип волокна называется волокном с ненулевой смещенной дисперсией (NZDSnon-zero dispersion shifted), где хроматическая дисперсия находится на уровне 6 пс/(нмкм) в диапазоне длин волн от 1530 до 1565 нм - наиболее популярном для современных систем WDM.

ПОЛЯРИЗАЦИОННАЯ МОДОВАЯ ДИСПЕРСИЯ

В одномодовом волокне единственной присутствующей модой является Н11. Однако если учитывать поляризацию, то в одномодовом волокне присутствуют две моды. Эти две моды предполагаются нами взаимно ортогональными, а поляризация - линейной.

Поляризационные моды

В реальной ситуации, когда волокно помещено в кабель и проложено в поле, трудно рассчитывать, что оно идеально. Существует ряд напряженных состояний, возникающих в волокне в процессе производства. Сердечник волокна и оболочка формируются в процессе механического вытягивания, вызывающего непредсказуемое двойное лучепреломление в волокне (приводящее к обмену мощностями между двумя состояниями поляризации, в результате чего эффективная скорость распространения света в среде зависит от ориентации вектора напряженности электрического поля). Механическое действие процесса намотки волокна на оправку вызывает асимметричное напряжение. Когда кабель прокладывается, возникают другие напряжения. Эти действия вызывают деформацию волокна, нарушающую округлость волокна или концентричность сердцевины относительно оболочки. Они могут приводить к удлинению волокна и его изгибу.

После того как волокно помещено в кабель ориентация рассмотренных осей и относительная разница в скорости распространения света по каждой из осей (непосредственно связанная с величиной локального двойного лучепреломления) изменяются вдоль оптического пути распространения. В каждом сегменте волокна между двумя порциями света, ориентированными по этим локальным (быстрым и медленным) осям, вводятся временные задержки. Так как относительная ориентация этих осей в соседних сегментах различна, импульс будет испытывать статистическое уширение во времени. В результате появляется поляризационная модовая дисперсия PMD.

Причины появления двойного лучепреломления в оптическом волокне

Показатель преломления зависит от поляризации волны – поляризационная анизотропия

Поляризационная анизотропия вызывает периодические изменения состояния поляризации света

Уширение импульсов в волокне с двойным лучепреломлением

Поляризационная анизотропия распределена по длине волокна хаотически

Усредненное уширение импульса вследствие поляризационной модовой дисперсии:

,                                               (2)

PMD – коэффициент поляризационной модовой дисперсии []

,                                                 (3)

lc – длина корреляции для поляризационной анизотропии волокна.

Способ уменьшения поляризационной модовой дисперсии – уменьшение длины корреляции для поляризационной анизотропии. PMD для стандартного одномодового волокна: 0,10,2 .

Существенное значение поляризационная модовая дисперсия имеет при скорости передачи данных более 10 Гб/с.


 

А также другие работы, которые могут Вас заинтересовать

20456. Комбінований метод хорд та дотичних 35.5 KB
  Характерна особливість методів дотичних і хорд та що послідовності їх наближень монотонні. Причому якщо для даного рівняння послідовність наближень методу хорд монотонно спадна то послідовність наближень методу дотичних – монотонно зростаюча і навпаки. У даному випадку за початкове наближення в методі хорд вибирають точку x=a а в методі дотичних – точку b.
20457. Множина́ 41.69 KB
  Основні поняття: Множина вважається означеною якщо про кожен об'єкт що розглядається можна казати що він або належить або не належить множині. Наприклад: ℕ множина натуральних чисел ℤ множина цілих чисел ℚ множина раціональних чисел ℝ множина дійсних чисел ℂ множина комплексних чисел. Нехай А множина. Множина B всі елементи якої належать множині А називають підмножиною множини A або частиною множини А і позначають цей факт символами B ⊆ A A ⊇ B.
20458. Основні задачі та проблеми проектування програмних продуктів 13.41 KB
  Пр428 Основні задачі та проблеми проектування програмних продуктів. Проектування – це процес розробки проекту тобто комплекту документації призначену для створення проекту його удосконалення та ліквідації а також для перевірки або відтворення проміжних і кінцевих рішень. Проектування – тривалий процес і включає етапи від підготовки технічного завдання до випробування. Процес створення програмного забезпечення ПЗ також включає в себе методи проектування.
20459. Каскадна (послідовна) модель 22.61 KB
  Вона передбачає послідовне виконання всіх етапів проекту в строго фіксованому порядку. Вимоги визначені на стадії формування вимог строго документуються у вигляді технічного завдання і фіксуються на весь час розробки проекту. Етапи проекту відповідно до каскадної моделлю: Формування вимог; Проектування; Реалізація; Тестування; Впровадження; Експлуатація та супровід. Недоліки: В Водоспадної моделі перехід від однієї фази проекту до іншого передбачає повну коректність результату виходу попередньої фази.
20460. Доповнення та різниця множин 18.86 KB
  Якщо A ⊂ U то елементи множини U які не належать А називаються доповненням множини А до множини U і позначають як CUA або UCA. Якщо A ⊂ U B ⊂ U то доповнення множини B до А називають різницею множин А та B саме в такому порядку і позначають А B або АB тобто A B = {x:x ∈ A ∧ x ∉ B}. Деякі властивості операції доповнення: A ∪ A′ = U A ∩ A′ = ∅ A′′ = A A − B = A ∩ B′ Об'єднання множин Об'єднанням множин А та B називається множина яка складається з усіх тих елементів які належать хоча б одній з множин A B: A ∪ B = {x: x ∈ A ∨ A...
20461. Життєвий цикл програмного забезпечення 58.5 KB
  Проектування: визначення структури системи та її проектуваннярозбиття програмної системи на окремі компоненти та проектування з визначенням ключових елементів структури даних. Тестування і верифікація: тестування вихідного текста;участь користувачів і колективів у всіх перевірках системи. Експлуатація і супроводження:використання готової програмної системи; оцінка її ефективності;усунення знайдених в процесі експлуатації помилок; внесення необхідних змін для підтримки актуальності програмної системи;д перевірка коректності внесених змін .
20462. Расчет характеристик вычислительных систем на основе стохастических сетей 239.66 KB
  В данной работе определяются характеристики вычислительной системы, модель замкнутой стохастической сети которой... Исходными данными для расчета являются следующие величины:
20463. Бу́лева фу́нкція (функція алгебри логіки, логічна функція) 22.02 KB
  Булева функція задається у вигляді таблиці або графіка зі стандартним лексикографічним розташуванням наборів аргументів. Нульарними булевими функціями є сталі 0 і 1. Функції 0 і 1 називаються тотожними нулем і одиницею функція x тотожною запереченням.
20464. CASE модель 14.28 KB
  Також під CASE розуміють сукупність методів і засобів проектування інформаційних систем з інтегрованими автоматизованими інструментами які можуть бути використані в процесі розробки ПЗ. У функції CASE входять засоби аналізу проектування й програмування. За допомогою CASE автоматизують процеси проектування інтерфейсів документування й генерування структурованого коду бажаною мовою програмування.