75423

Бінарні сенсори. Цифрові сенсори

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Бінарні сенсори влаштовані як реле (перемикачі) або як аналогові сенсори з перемикачем порогового значення. Коли вхідна величина сенсора досягає порогу перемикання, бінарний вихідний сигнал змінює значення. Під час зміни вхідної величини у зворотному напрямі, по досягненню порогового значення...

Украинкский

2015-01-12

480 KB

1 чел.

ЛЕКЦІЯ 20

Бінарні сенсори. Цифрові сенсори.

Бінарні сенсори Бінарні сенсори характеризуються двозначним вихідним сигналом, наприклад, сигналом, який приймає значення увімкнено/вимкнено, сигналом напруги О B /10 B струмовим сигналом О тА /20 піА. Бінарні сенсори влаштовані як реле (перемикачі) або як аналогові сенсори з перемикачем порогового значення. Коли вхідна величина сенсора досягає порогу перемикання, бінарний вихідний сигнал змінює значення. Під час зміни вхідної величини у зворотному напрямі, по досягненню порогового значення, бінарний сигнал знову змінює своє значення (двозначний сигнал). Різниця значення аналогового сигналу в точках зміни значення (перемикання) бінарного сигналу називається гістерезисом (рис.20.1). Всі бінарні сенсори мають гістерезис.

Рис.20.1. Гістерезис перемикання.

Тактильний сенсор інформує про зіткнення з зовнішнім предметом (доторкання), наприклад стиковий кінцевий вимикач з пружинним стрижнем (рис.20.2.).

Рис.20.2. Тактильний сенсор.

Пружинний стрижень закріплений за допомогою кулькового коліна і при дотику викликає перемикання контактів. Тактильні сенсори застосовуються, наприклад на транспортних стрічках для виявлення на них наявності предметів.

Безконтактні сенсори наближення з електронним генеруванням вихідного сигналу працюють без рухомої механічної частини і тому не зношуються. Основними безконтактними сенсорами наближення є індуктивні, ємнісні та оптичні сенсори.

Індуктивні сенсори наближення реагують при наближенні до котушки сенсора металевих предметів (Рис.20.3.). Під впливом металу в коливному контурі, який містить котушку сенсора гасяться коливання, тобто амплітуда коливань значно змінюється.   За допомогою під'єднаних підсилювача і електронного порогового перемикача   формуються бінарні вихідні сигнали. Індуктивні сенсори наближення для дуже малих віддалей наближення мають діаметр біля 4 мм, для віддалей наближення до біля 80 мм — діаметр до 80 мм.

Рис.20.3. Індуктивні сенсори наближення.

Ці елементи невразливі на пилюку, бруд та вібрації. Реагують на всі металеві предмети. Частота перемикань досягає 3000 перемикань на секунду, а повторюваність показань становить біля 1%. Індуктивні сенсори наближення застосовуються, наприклад, як сигнальні перемикачі кінцевого положення столів верстатів, а також для виявлення,  порівняння або сортування деталей в виробничих лініях.

Ємнісні сенсори наближення влаштовані так само, як і індуктивні сенсори. Вихідний сигнал змінюється в результаті зміни частоти коливань контуру осцилятора, спричиненої зміною діелектрика поблизу конденсатора сенсора. За допомогою ємнісних сенсорів наближення виявляються предмети зі скла, кераміки, синтетики, деревини, каміння, паперу, а також наявність оливи, води або цементу.

Оптичні сенсори наближення працюють як рефлексні сенсори з використанням пульсуючого інфрачервоного випромінювання. При наближенні предмету генероване, діодом пульсуюче інфрачервоне випромінювання відбивається від нього і приймається фототранзистором (рис.20.4).

Рис.20.4. Оптичний сенсор наближення

Рис.20.5. Приклади застосування оптичних сенсорів наближення.

Пульсуюче випромінювання застосовується з метою виключення можливості завад від іншого світла. Електронна приймальна система реагує тільки на світло, яке пульсує з постійною частотою. Щоб можна було використовувати оптичні сенсори в дуже малих пристроях, наприклад, в мікроприводах, висилане і відбиране випромінювання пересилається тонкими, гнучкими світлопроводами з скляного волокна. Оптичні сенсори наближення часто використовуються в транспортних пристроях і на монтажних установках (рис.20.5).

Бінарні сенсори температури часто будуються як біметалеві перемикачі (рис.20.6). Біметалева стрічка, яка складається з двох металів з різними коефіцієнтами теплового розширення, вигинається під час нагрівання і розриває контакт.

Рис.20.6. Бінарні сенсори температури.

Крім біметалів для формування ефекту перемикання використовуються так звані метали з пам'яттю вигляду. Це матеріали, які по-різному, залежно від температури можуть  приймати  різні  стани або вигляд, наприклад, дві різні довжини. У визначеному, дуже вузькому діапазоні температури, змінюють структуру, наприклад, з аустеніту в мартенсит і залежно від тих структур набувають різного вигляду.

Бінарні сенсори температури застосовуються для охорони від теплового перевантаження і для двоступеневого регулювання температури в електричних опалювальних пристроях, наприклад, в кухонних плитах, прасках, для регулювання температури в приміщеннях або для захисту від перенавантаження в ручних свердлильних верстатах.

Цифрові сенсори - це пристрої, які генерують інформацію про значення величини, вимірюваної у вигляді числа, наприклад, довжини відрізка шляху, часового відтинку або про величину енергії. Часто сигнали аналогових сенсорів перетворюються в цифрові сигнали за допомогою відповідних перетворювачів і використовуються в спеціальних застосуваннях, наприклад, сенсори образу, які можуть автоматично оцінювати поверхню матеріалів.

Питання для контролю і засвоєння

1.  Який принцип утворення сигналів в тактильних сенсорах?

2.  Прошу описати принцип дії бінарних індуктивних сенсорів наближення.

3.  Прошу згадати інші види бінарних сенсорів наближення.

4.  Що таке цифровий сенсор? Принцип дії.

5. Принцип дії безконтактних сенсорів наближення.

6. Принцип дії оптичних сенсорів наближення. Де їх використовують?


 

А также другие работы, которые могут Вас заинтересовать

42199. Калібрування і повірка термометрів опору 286.5 KB
  Засвоїти методику отримання практичних навиків при проведенні досліджень динамічних характеристик термометрів опору при нагріванні і охолодженні повірці термометрів опору та калібруванні напівпровідникових термометрів опору термісторів.2 Програма роботи Під час заняття студент повинен ознайомитись з будовою та принципом дії термометрів опору. Визначити динамічну похибку термометрів опору типу ТСП і ТСМ.
42200. Систематичні похибки вимірювань та методи їх зменшення 71.5 KB
  У процесі заняття провести вимірювання різних електричних величин різними способами і засобами визначити систематичні похибки ввести поправки до результатів вимірювань обчислити дійсні значення вимірюваних величин і впевнитись у правильності отриманих значень.1 Систематичні похибки вимірювань та методи їх зменшення Процес пізнання матеріального світу відбувається через експериментальне визначення вимірювання кількісних оцінок фізичних величин що характеризують досліджувані процеси явища. Таким чином результат...
42201. Вивчення будови, принципу дії та застосування електронного осцилографа для електричних вимірювань 461 KB
  Практичне виконання вимiрювань напруги струму часових iнтервалiв частоти кута зсуву фаз складової комплексного опору та iнших електричних величин з допомогою осцилографа. При пiдготовцi до роботи студенти повиннi самостiйно продумати i завчасно пiдготувати програму виконання роботи для заданого їм варiанта вибрати або скласти самостiйно необхiднi для цього схеми вимiрювань запропонувати свої рiшення в здiйсненнi вимiрювань дiючих значень синусоїдальних струмiв i напруг з допомогою осцилографа. Пропонується продумати методику...
42202. Вивчення методів та засобів вимірювання електричної ємності та індуктивності 245 KB
  Ознайомлення з різними методами вимірювання електричної ємності і індуктивності та приладами що використовуються для цього. Ознайомлення з будовою мостів змінного струму і універсальних мостів з будовою і застосуванням резонансних вимірювачів індуктивності L і ємності С. Отримання навичок практичного виконання вимірювань ємності і індуктивності.
42203. Електронні автоматичні мости і їх повірка 109 KB
  За результатами повірки зробити висновки про придатність до експлуатації автоматичного моста.3 Основні теоретичні відомості Електронні автоматичні мости Як правило термометри опору працюють в комплекті зі зрівноваженими електронними автоматичними мостами постійного або змінного струму або з логометрами. В автоматичних мостах використовується вимірювальна система чотириплечового моста з реохордом що забезпечує високу точність вимірювання. Термометр опору який є чутливим елементом моста включається в одне з його плечей.
42204. МОДЕЛИРОВАНИЕ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ 751 KB
  Ознакомление с пакетом прикладных программ SIMULINK и основными приемами моделирования линейных динамических систем. К занятию допускаются студенты составившие схемы моделирования заданных динамических систем см.1 могут быть составлены схемы моделирования уравнений 1. Для составления схемы моделирования дифференциальных уравнений 1.
42205. КАНОНИЧЕСКИЕ ФОРМЫ ПРЕДСТАВЛЕНИЯ ДИНАМИЧЕСКИХ СИСТЕМ 181.26 KB
  Математическая модель одной и той же линейной динамической системы может быть представлена в различных формах: в форме скалярного дифференциального уравнения -го порядка (модель вход-выход) или в форме системы из дифференциальных уравнений 1-го порядка (модель вход-состояние-выход). Следовательно, между различными формами представления математических моделей существует определенная взаимосвязь, т.е. модель вход-состояние-выход может быть преобразована к модели вход-выход и наоборот.
42206. ПОСТРОЕНИЕ И ИССЛЕДОВАНИЕ МОДЕЛЕЙ ВНЕШНИХ ВОЗДЕЙСТВИЙ 215.45 KB
  Теоретические сведения. В ряде задач анализа и синтеза систем управления требуется построить дифференциальное уравнение по известному частному решению, заданному в виде функции времени. Такая задача возникает, например, при построении динамических моделей внешних воздействий (так называемых, командных генераторов) — сигналов задания и возмущений. Особо отметим, что, в известном смысле, данная задача является обратной по отношению к задаче нахождения решения дифференциального уравнения (см. лабораторную работу № 1)
42207. ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ 512 KB
  Интегрирующее звено интегратор описывается дифференциальным уравнением: или где коэффициент усиления а его переходная функция . Интегрирующее звено с замедлением описывается дифференциальным уравнением: или где постоянная времени а его переходная функция . Изодромное звено описывается дифференциальным уравнением: или а его переходная функция . Реальное дифференцирующее звено описывается дифференциальным уравнением или а его переходная функция .