75424

Інкрементальні сенсори положення. Кодові лінійки і диски абсолютних сенсорів

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Інкременгальні сенсори переміщення оснащені лінійкою з рисковими поділками. Читання положення рисок здійснюється оптичними або магнітними методами. В сенсорах через які проходить світло використовуються скляні лінійки з рисками які поглинають світло і проміжками які пропускають світло шириною 4 мкм рис. Пристрої які зчитують це складаються з потужного джерела світла зчитувальної пластинки і електронної системи аналізу.

Украинкский

2015-01-12

631 KB

1 чел.

ЛЕКЦІЯ 21

Інкрементальні сенсори положення. Кодові лінійки і диски абсолютних сенсорів.

Інкременгальні сенсори положення. Інкременгальні сенсори переміщення оснащені лінійкою з рисковими поділками. Читання положення рисок здійснюється оптичними або магнітними методами.

В сенсорах, через які проходить світло, використовуються скляні лінійки з рисками, які поглинають світло і проміжками, які пропускають світло, шириною 4 мкм (рис.21.1). Пристрої, які зчитують це, складаються з потужного джерела світла, зчитувальної пластинки і електронної системи аналізу. Зчитувальна пластинка теж  оснащена рисковими поділками, які поглинають світло і проміжками, які пропускають  світло.

Рис.21.1. Інкременгальний сенсор лінійного

                           переміщення.

Коли проміжки між рисками лінійки знаходяться навпроти проміжків зчитувальної платівки, світло - з  джерела світлу - проникає до світлочутливих фотодіодів, І в яких сигнали надалі перетворюються електронно. Після пересуву лінійки відносно зчитувальної платівки на  ширину рисок світло не проникає до фотодіодів. Під час  пересування лінійки з рисковими поділками  відносно зчитувальної   платівки періодично змінюється кількість  світла, яке проходить, з періодом, який дорівнює одній  поділці лінійки (рис.21.2). Для розпізнавання напряму перебування лінійки, зчитувальна платівка складається з двох  частин. Риски на одній частині зміщені відносно рисок  другої частини на ширину риски (1/4 періоду). Завдяки цьому зміни освітлення однієї частини платівки зміщені  відносно змін на другій частині платівки на 1/4 періоду. Під час пересування лінійки вправо перехід від положення з максимальним освітленням за першою частиною платівки до максимального освітлення за другою частиною відповідає пересуву на 1/4 періоду. При пересуванні лінійки вліво такий перехід відповідає пересуву лінійки на 3/4 періоду. Фотодіоди за обидвома частинами зчитувальної платівки генерують відповідно синусоїдальну і косинусоїдальну напруги. Ці обидва процеси можна аналізувати. Наприклад, кожен період можна поділити на 1024 частини. Це називається інтерполяцією. В такий спосіб отримується роздільна здатність порядку манометра.

Рис.21.2.Процес утворення сигналів в інкрементальному сенсорі положення.

Дуже простий метод використання синусоїдальної та косинусоїдальної напруг полягає в їх перетворенні в прямокутні напруги і їх порівняння в реверсивному лічильнику (рис. 2). Напруги U1 і U2 додаються, в результаті чого при пересуванні лінійки отримуємо прямокутні імпульси напруги   U3/

Диференціюючи електронним способом сигнал U3, для кожної зміни напруги отримуємо імпульс (напругу U4), а саме додатний імпульс при зміні напруги у додатному напрямі і від'ємний імпульс при зміні у від'ємному напрямі. Кількість цих імпульсів в чотири рази більша, ніж кількість періодів рискових поділок. Таким чином отримуємо чотирикратне перемноження кількості поділок, завдяки чому - при розмірі поділки вимірювальної лінійки 4 мкм - отримуємо роздільну здатність 1 мкм.

Полярність напруги U4 залежить від перебігу напруг U1 і U2. Коли лінійка пересувається вправо (чорний колір), імпульси U4мають таку полярність, як U1. Коли лінійка пересувається вліво (червоний колір), імпульси U4 мають таку полярність, як U2. Це одночасно уможливлює розпізнання напряму руху лінійки.

Інкрементні, оптичні сенсори кутового положення

Для вимірювання кутового положення використовуються інкрементні оптичні сенсори (рис.21.3). В цьому випадку риски нанесені на краю обертового диску. Риски поділок зчитуються зчитувальною плиткою з двома рисковими поділками, які зсунуті одна відносно іншої на 1/4 періоду поділки. Якщо кількість рисок становить, наприклад, 36 000, то при інтерполяції 1:1024 отримуємо роздільну здатність 0,00001°.

Рис.21.3. Інкрементні, оптичні сенсори

Рис.21.4. Інкрементний магнітний сенсор.

кутового положення

Сенсори кутового положення використовуються також, в поєднані з прецизійною кульково-гвинтовою парою для вимірювання лінійного положення. За кроку різьби гвинта Р = 10 мм і диску сенсора з 2500 рисками на периметрі, при чотирикратному діленні періоду, отримуємо 10000 імпульсів на оборот вимірювального валу, а, отже, роздільну здатність 10 мм/ 10000 = 1 мкм.

Інкрементні, магнітні сенсори лінійного і кутового положення

У магнітних сенсорах на металевому шарі підкладки нанесений магнітний матеріал, який намагнічений (рис.21.4) з періодом поділок біля 0,2 мм - подібно, як при звукозаписі звуку на магнітофонній стрічці.

Для зчитування служать дві зчитувальні головки, зсунуті на чверть періоду поділки (λ/4) і завдяки тому утворюють два зміщені один відносно іншого по фазі синусоїдальні сигнали.

Для виявлення магнітних полів використовуються давачі Холла. Кількість інкрементів на один оборот залежить від діаметру магнітного диску, наприклад, 2048 імпульсів на оборот.

Кодові лінійки і диски абсолютних сенсорів

Лінійки з написаними на них числами не можуть використовуватись як перетворювачі положення, тому що автоматичне читання чисел клопітливе і крім того вони не можуть бути розміщені занадто близько одне від іншого. Лінійки з бінарним кодом можуть використовуватись для абсолютних вимірювань (безумовних).

Вони мають таку систему полів, наприклад, чорних і білих або пропускаючих і непропускаючих світло, що кожна позиція на лінійці бути однозначно підпорядкована одному числу. Часто бінарне кодування виконується так, що в нульовій стежці пропускаючі і непропускаючі світло риски мають таку ширину, як інкрементальні сенсори (рис.21.5.). У першій стежці ширина рисок вдвічі більша , ніж в нульовій стежці. У кожній наступній стежці ширина рисок збільшується двічі.

Рис.21.5.Лінійка з поділками в бінарному ході.

Виключення помилок зчитування Так як границі рисок в окремих стежках розміщені не точно, а фотодіоди мають різну чутливість на світло під час читання в місцях переходу між пропускаючими і непропускаючими світло полями, можуть виникати помилки. Ці помилки є тим більшими, чим більшу вагу має стежка, яка змінює своє значення.

Використовуючи систему зчитування методом V бінарний код може бути зчитаний однозначно, без помилок зчитування (рис.21.6).

Рис.21.6.Система зчитування методом V.

Рис.21.7. Лінійка з кодом Грея.

Коли в одній стежці розпізнано темне поле, то для зчитування наступної стежки активізований лівий фотоді-од, в протилежному випадку - правий. Застосовуються лінійки з кодами, в яких перехід від однієї позиції до наступної пов'язаний із зміною розряду тільки в одній стежці. Такі коди, наприклад, код Грея, називаються кодами з постійним проміжком (рис.21.7). У випадку коду Грея немає потреби в системі, що читає згідно з методом V, тому що зчитуване значення може відрізнятися від правильного значення що найвище на 1. Код Грея не має постійних номерів позиції. З метою подальшого опрацювання зчитувані сигнали мусять бути перетворені на інший код.

Сенсори кутового положення з обертовими кодовими дисками

Обертові кодові диски застосовуються в сенсорах абсолютного кутового положення (називаються ще кутовими кодерами), а в поєднані з гвинтовою або зубчатою передачею- для вимірювання абсолютних лінійних положень. На кодовий диск нанесено - у вигляді від 10 до 17 стежок - узор коду (рис.21.8), що відповідає від 2!0 = 1024 до 217 = 131072 кутових значень на один оборот.

Рис.21.8. Кодовий диск.

Щоб не виводити зі зчитувача кожної стежки кодера окремого каналу, часто в конструкцію сенсора поміщають пристрій для послідовної передачі сигналів (рис.21.9).

На першому задньому фронті тактового сигналу, який видає приймач, запам'ятовується значення зчитане через зчитувач. Передавання даних до приймача наступає на першому наростаючому фронті тактового сигналу. Крім значення кута додатково передається інформація про помилки коду, наприклад, що виникають через несправність джерела світла.

      Рис.21.9.Керування циклом пересилання інформації.

Дискові кодери можуть передавати закодовані значення кута послідовно. Багатодискові кодери

Рис.21.10.Багатодисковий кодер для вимірювання кута вдіапазоні 100 оборотів по 1000 кутових значень на один оборот.

Щоб можна було за допомогою дискових кодерів вимірювати кути, які перевищують 360°, а отже в діапазоні декількох оборотів, об'єднують через редукторну передачу два або більше кодових дисків (рис. 3). Наприклад, перший диск містить три тетради коду ВСО, для 1000 кутових значень. Через редуктор 1:100 приводиться другий кодовий диск, з двома тетрадами коду ВСD. Завдяки цьому однозначно можна закодувати 100 оборотів по 1000 кутових значень, а отже 100000 позицій. Якщо такий сенсор приєднати через гайку гвинтової передачі з кроком різьби 10 мм, то гайка передачі переміститься на віддаль 100 • 10 мм = 1 м і перейде через 100000 позицій. Отже роздільна здатність досягне значення 1 /100 000 м = 0,01 мм.

Дискові кодери відображають через узор коду абсолютне значення кутового положення.

Питання для контролю і засвоєння

1. Прошу описати принцип дії оптичного, інкрементного лінійного сенсора положення.

2.  Як в інкрементних сенсорах отримується інформація про напрямок руху?

3. Якими методами можна покращувати властивості інкрементних вимірювальних систем?

4.   Прошу пояснити принцип дії магнітного інкрементного сенсора.

5. Чим принципово відрізняються сенсори абсолютної дії від інкрементних? 20.   В який спосіб досягають однозначного зчитування кодових лінійок?

6.   Які переваги має код Грея порівняно з натуральним бінарним кодом у випадку їх використання для кодування лінійки?

7.  В який спосіб можна за допомогою дискових кодерів отримувати однозначну інформацію про значення кута в діапазоні багатьох оборотів?


 

А также другие работы, которые могут Вас заинтересовать

14369. ЭЛЕКТРИЧЕСТВО ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК 4.5 MB
  Описания лабораторных работУчебной лаборатории физического эксперимента физического факультета СПбГУ Часть IV ЭЛЕКТРИЧЕСТВО ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК Данное пособие содержит описания лабораторных работ по разделу Электричест
14370. Расчет коэффициента внутреннего трения жидкости по методу Стокса 99.5 KB
  Лабораторная работа №17 по дисциплине Физика на тему: Определение коэффициента внутреннего трения жидкости по методу Стокса 1. Цели и задачи: целью данной работы является определение коэффициента динамической вязкости исследуемой жидкости при температур...
14371. Финансовое планирование в организации 740.5 KB
  Понятие финансового планирования. Содержание и цели финансового планирования. Основные принципы и задачи финансового планирования. Виды финансовых планов, составляемых в организации: перспективные, текущие и оперативные планы, планы финансирования капитальных вложений, планы текущих операций.
14372. Определение отношения теплоемкостей газов Cp/Cv методом адиабатического расширения 96 KB
  Лабораторная работа № 9 по дисциплине Физика на тему: Определение отношения теплоемкостей газов Cp/Cv методом адиабатического расширения 1. Цели и задачи: в работе необходимо определить γ = Cp/Cv для воздуха используя адиабатический метод Клемана и Дезорма. 2...
14373. Определение удельной теплоты плавления льда и изменения энтропии в процессе плавления 86.5 KB
  Лабораторная работа №15 по дисциплине Физика на тему: Определение удельной теплоты плавления льда и изменения энтропии в процессе плавления. 1. Цели и задачи: определение калориметрическим методом удельной теплоты фазового перехода λ и расчет изменения эн
14374. Градуировка дифференциальной термопары медь-константан по термометру и определение коэффициента термоэдс для спаев двух данных металлов 115.5 KB
  Лабораторная работа №15 по дисциплине Физика на тему: Градуировка дифференциальной термопары медьконстантан по термометру и определение коэффициента термоэдс для спаев двух данных металлов 1. Цели и задачи: дифференциальную термопару необходимо проградуи
14375. Определение ЭДС и напряжений методом компенсации 232 KB
  Лабораторная работа № 32 по дисциплине Физика на тему: Определение ЭДС и напряжений методом компенсации. Цели и задачи: Определение ЭДС элемента при комнатной температуре методом компенсации. Определение внутреннего сопротивления элемента.
14376. Дифракция света на бегущих ультразвуковых волнах 199 KB
  Лабораторная работа по дисциплине Физика на тему: Дифракция света на бегущих ультразвуковых волнах.. Цели и задачи: определить скорость ультразвука в воде по дифракции света на бегущих волнах и рассчитать для воды. Приборы и...
14377. Определение ускорения свободного падения при помощи физического оборотного маятника и нахождения его момента инерции 96 KB
  Определение ускорения свободного падения при помощи физического оборотного маятника и нахождения его момента инерции Лабораторная работа №4 1. Цели и задачи: определить ускорение свободного падения при помощи физического оборотного маятника и найти его момент и