75426

Регулятор і система регулювання

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Регулятори: перервні аналогові цифрові. Регулятори: первинні аналогові цифрові Регулятори неперервної дії аналогові змінюють значення регульовальної координати обєкту неперервним чином тобто ця координата може приймати будьякі значення з усього можливого діапазону. Неперервні регулятори будуються як правило з електронних операційних підсилювачів. Реулятори дискретної дії цифрові змінюють значення регульованої координати обєкту так само як і регулятори первинної дії але в них зміна величини відбувається лише в певні моменти...

Украинкский

2015-01-12

7.58 MB

2 чел.

ЛЕКЦІЯ 23

Регулятор і система регулювання.

Регулятори: перервні, аналогові, цифрові. Квантування і опитування сигналів.

Регулятори: первинні, аналогові, цифрові

Регулятори неперервної дії (аналогові) змінюють значення регульовальної  координати об’єкту неперервним чином, тобто ця координата може приймати будь-які значення з усього можливого діапазону. Неперервні регулятори будуються, як правило, з електронних операційних підсилювачів.

Реулятори дискретної дії (цифрові) змінюють значення регульованої координати об’єкту так само, як і регулятори первинної дії, але в них зміна величини відбувається лише в певні моменти часу, а її дискретизація є настільки точною, що об’єкт цього практично не відчуває. Такі регулятори створюють на основі мікропроцесорних або комп’ютерних систем.

 Первинні регулятори. Релейні регулятори мають два значення вихідного сигналу (рис. 23.1).

Рис.23.1. Дворівневий регулятор

Типовим прикладом їх застосування може бути система регулювання температури. Біметалевий сенсор, елемент, що порівнює задане значення температури з дійсним, а також виконавчий перемикач – все це об’єднане в одне ціле (рис. 23.2).

Рис.23.2. Біметалевий регулятор

Якщо температура збільшиться понад задане значення, то біметалева пластина від нагрівання вигинається (вимірювання дійсного значення температури) і розмикає коло живлення нагрівного елементу (виконавча дія). Якщо ж температура менша від заданого значення, то біметалева пластина, випрямлюючись, вимикає коло живлення вимикача. Щоб при замиканні – розмиканні контакту не виникла дуга, постійний магніт, який притягує біметалеву пластину, забезпечує швидке, стрибкоподібне розмикання – замикання контакту лише після перевищення певного порогу температури відносно заданої. Тому в даній системі значення температури при замиканні та розмиканні електричного кола дещо відрізняються

(зона нечутливості) (рис. 23.3).

Рис.23.3. Регулювання температури за допомогою двохпозиційного регулятора

Крім регулювання температури, релейні регулятори використовуються в системах регулювання тиску а також рівня наповнення резервуара.

Квантування і опитування сигналів.

Якщо координати процесу мають неперервний (аналоговий) характер, то перед введенням в комп’ютер їх потрібно перевести у цифрову, дискретну форму (рис. 23.4).

Це перша особливість систем цифрового керування. В комп’ютері приймається дуже мале значення дискети (рівня квантування), але воно вносить деяку неточність в систему регулювання. Величина цієї дискети має бути вибрана набагато меншою від допустимої похибки визначення положення (бажаної точності механізму). В протилежному випадку виникатимуть, особливо при малих швидкостях та в залежності від періоду опитування, помилки відліку, а від них відповідно великі значення похибки положення.

Рис.23.4. Квантування аналогового сигналу за рівнем і в часі

Другою особливістю системи цифрового керування є квантування в часі. Комп’ютер зчитує вхідну інформацію лише у визначенні, рівновіддалені моменти часу, наприклад, кожні 10 мс. Тобто відбувається дискретизація часу. Це обумовлене циклічністю перетворення даних, яким визначається період квантування – проміжок часу, на якому повторюється цикл роботи програми регулятора.

Сигнал в дискретній формі є тим ближчий до його дійсного неперервного значення і за величиною, і за часом, чим вищою є частота опитування і чим довше слово в перетворювачі АЦП, тобто чим меншим є час квантування.

Частота опитування залежить від швидкості сприйняття і перетворення інформації комп’ютером, від використовуваних алгоритмів регулювання та інших обчислювальних задач, які виконує комп’ютер,а також від кількості обслуговуваних систем цифрового керування.

Опитування разом з проміжним запам’ятовуванням призводить до зміщення в часі (час запізнення) первинного сигналу в середньому на половину періоду квантування (рис. 5). Це зміщення не є бажаним, (так само як і зсув фази), бо воно, як і ланка запізнення, підвищує схильність системи до виникнення коливань.

Рис.23.5. Схема перетворення сигналів в комп’ютері


Типи регуляторів. Закони регулювання  

Класифікація систем автоматичного регулювання (САР) приведена в табл. 1

1 За призначенням алгоритму зміни задаючої дії (або по вигляду виконуваних функцій)

Що стабілізує

Підтримує регульований параметр на постійному значенні заданої точки. X=SP=const

Програмна

Змінює регульовану величину відповідно до функції завдання в часі - програмні задатчики. SP=F[SPprog(t)]

Слідкуюча

Завдання полягає в тому, щоб зміни регульованої величини стежили за змінами іншого параметра. X=var

З управлінням від ПЕВМ

Змінює регульовану величину залежно від наперед невідомої величини заданої точки. Значення завдання регулятору формується по інтерфейсу. X=var

2 По кількості контурів регулювання

Одно контурні

Що містять один контур регулювання

Багатоконтурні

Декілька контурів регулювання, що містять (в т.ч. каскадні регулятори, регулятори обмеження)

3 По кількості регульованих технологічних параметрів

Однокомпонентні

Системи з однією регульованою величиною

Багатокомпонентні незв'язані

Системи з декількома регульованими величинами. Регулятори безпосередньо не зв'язані і можуть взаємодіяти тільки через загальний для них об’єкт регулювання

Багатокомпонентні зв'язані

Системи з декількома регульованими величинами. Регулятори різних параметрів одного або декількох об’єктів зв'язані між собою:

• Регулятори  із статичною і динамічною корекцією параметра або заданої точки

• Регулятори співвідношення декількох параметрів з постійним або керованим коефіцієнтом співвідношення

• Каскадні регулятори

• Регулятори обмеження (з  макс. або мін. обмеженням)

4 По своєму функціональному призначенню

Спеціалізовані

САР температури, тиску, витрати, рівня, об’єму і ін.

Універсальні

З нормованими вхідними і вихідними сигналами і придатні для управління різними параметрами

5 За законом регулювання або логіці роботи контура регулювання

Двохпозиційний

Трьохпозиційний

П,ПІ,ПІД-регулятор

ШІМ-регулятор

Адаптивні

Самоналагоджувальні, автонастроюються набудовуються,налаштовуються

Оптимальні

Що використовують оптимальний закон регулювання

6 По характеру  використовуваних для управління сигналів (по роду дії)

Безперервні

Аналогові сигнали (струм, напруга). Окремий випадок - вихідний сигнал ШІМ  регулятора (здискретним виходом)

Дискретні

Релейні, імпульсні, цифрові. Вихідні пристрої  - механічне реле, твердотільне реле, симістор, тиристор, транзисторний ключ, інтерфейс

7 По характеру математичних співвідношень

Лінійні

Для яких справедливий принцип суперпозиції (див. прим.1)

Нелінійні

Для яких не справедливий принцип суперпозиції (див. прим.1)

8 По вигляду  використовуваній для регулювання енергії

Електричні

В т.ч. електронні

Пневматичні

Мембранні, поршневі, лопатеві

Гідравлічні

Механічні

Комбіновані

Електропневматичні, пневмо-, електромеханічні

9 За принципом регулювання

По розузгодженню

По відхиленню

По відхиленню

Комбіновані

10 По напряму дії

Прямі

Регулятори  прямої (нормального) дії

Зворотні

Регулятори  зворотної (реверсивного) дії

11 За принципом дії

Прямої дії

Не використовують зовнішню енергію, а використовують енергію самого об’єкта управління (регулятори  тиску)

Непрямої дії

Для роботи потрібне зовнішнє джерело енергії


 

А также другие работы, которые могут Вас заинтересовать

41899. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД НЬЮТОНА 213.45 KB
  Цель работы: научиться решать системы нелинейных уравнений СНУ методом простых итераций МПИ и методом Ньютона с помощью ЭВМ. Изучить МПИ и метод Ньютона для решения систем нелинейных уравнений. На конкретном примере усвоить порядок решения систем нелинейных уравнений МПИ и методом Ньютона с помощью ЭВМ. Построить рабочие формулы МПИ и метода Ньютона для численного решения системы при начальном приближении: .
41900. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ 244.14 KB
  Цель работы: научиться решать системы линейных алгебраических уравнений СЛАУ методом простых итераций МПИ и методом Зейделя с помощью ЭВМ. Изучить метод простых итераций и метод Зейделя для решения СЛАУ. Сравнить скорости сходимости метода простых итераций и метода Зейделя. Построить рабочие формулы МПИ и метода Зейделя для численного решения системы.
41901. Знакомство со средой разработки Oracle Application Express. Создание исходного приложения 1.09 MB
  Знакомство со средой разработки Orcle ppliction Express. Каковы основные компоненты среды разработки Orcle ppliction Express ppliction Builder собственно среда разработки webстраниц и бизнесправил. Что такое рабочая область workspce Рабочая область workspce это виртуальная частная база данных которая позволяет множеству пользователей работать с одной инсталляцией Orcle ppliction Express обеспечивая при этом приватность пользовательских объектов и приложений.
41902. Построение графиков в среде программирования MATLAB 354.21 KB
  Цель работы: научиться строить графики различных типов в программной среде MATLAB. Изучить основные операторы построения графиков в среде программирования MATLAB; освоить принципы построения различных типов графиков в среде программирования MATLAB.
41904. Проверка выборочного распределения 54.6 KB
  По критерию Пирсона гипотеза о нормальности изучаемого распределения принимается. Основные статистические характеристики: Среднее выборочное значение (математическое ожидание)
41905. Исследование работы усилительного каскада на биполярном транзисторе 48.29 KB
  2013 Цели работы: Определить основные параметры усилительного каскада на биполярном транзисторе и их зависимость от значений режимов работы схемы; Снять и построить амплитудночастотную характеристику усилительного каскада на биполярном транзисторе в схеме с ОЭ; Приборы и оборудование: Учебный лабораторный комплекс Устройство лабораторное по электротехнике К4826. Ход работы: Собрали схему для снятия характеристик усилительного каскада на биполярном транзисторе в соответствии с рисунком 1: Рисунок 1 Усилительный каскад на...
41906. ИССЛЕДОВАНИЕ ЗАМЕДЛЯЮЩИХ СИСТЕМ НА РЕЗОНАНСНОМ МАКЕТЕ 98.13 KB
  Исследование проводится на резонансном макете (рис. 1), который представляет собой короткозамкнутый отрезок ЗС длиной пять периодов. С помощью петли связи 4 в макете возбуждается стоячая волна, амплитуда которой контролируется через петлю связи 5. Размеры петель выбраны из условия пренебрежимо малого искажения ими поля в ЗС.
41907. Создание консольного приложения на языке C# 12.39 KB
  Используя среду разработки MS Visul Studio 2010 необходимо создать консольное приложение выполняющее определённые действия над указанным текстовым файлом: Вариант 1: Рассчитать и вывести на консоль количество гласных и количество согласных букв в тексте файла. Вариант 2: Рассчитать и вывести на консоль сумму целых чисел перечисленных во входном файле. Вариант 3: Вывести самое длинное слово из текста находящегося во входном файле несколько таких слов если их длина одинакова. Вариант 4: Вывести три слова из текста находящегося во входном...