75600

ЦИФРОВАЯ ОБРАБОТКА НЕСТАЦИОНАРНЫХ СИГНАЛОВ. ПРЕОБРАЗОВАНИЕ ГИЛЬБЕРТА-ХУАНГА

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Каждый из этих колебательных режимов может быть представлен функцией внутренней моды intrinsic mode function IMF. IMF представляет собой колебательный режим как часть простой гармонической функции но вместо постоянной амплитуды и частоты как в простой гармонике у IMF могут быть переменная амплитуда и частота как функции независимой переменной времени координаты и пр. Любую функцию и любой произвольный сигнал можно разделить на семейство функций IMF. Процесс отсева функций IMF.

Русский

2015-01-15

140 KB

8 чел.

ОС. Лекция 13-14

ЦИФРОВАЯ ОБРАБОТКА НЕСТАЦИОНАРНЫХ СИГНАЛОВ. ПРЕОБРАЗОВАНИЕ ГИЛЬБЕРТА-ХУАНГА.

Введение

Под преобразованием Гильберта-Хуанга (Hilbert-Huang transform – HHT)  понимается эмпирический метод декомпозиции (EMD) нелинейных и нестационарных процессов и Гильбертов спектральный анализ (HSA). HHT представляет собой частотно-временной анализ данных (сигналов) и не требует априорного функционального базиса. Функции базиса получаются адаптивно непосредственно из данных процедурами отсеивания EMD. Мгновенные частоты вычисляются от производных фазовых функций Гильбертовым преобразованием функций базиса. Заключительный результат представляется в частотно-временном пространстве. Ниже на рис. 1 приведен пример представления потока спектров спутниковых ЛЧМ-сигналов в частотно-временном пространстве.

 

Рис. 1. Пример представления фрагмента потока спектров спутниковых ЛЧМ- сигналов.

EMD-HSA был предложен Норденом Хуангом в 1995 в США (NASA) для изучения поверхностных волн тайфунов, с обобщением на анализ произвольных временных рядов коллективом соавторов  в 1998 г. /2/. В последующие годы, по мере расширения применения EMD-HSA для других отраслей науки и техники, вместо термина EMD-HSA был принят более короткий термин преобразования HHT.

Декомпозиция сигналов основана на предположении, что любые данные состоят из различных режимов колебаний. В любой момент времени данные могут иметь много различных сосуществующих режимов колебаний, нанесенных одно на другое. Каждый режим, линейный или нелинейный, представляет простое колебание, которое имеет экстремумы и нулевые пересечения. Кроме того, колебание будет в определенной степени «симметрично» относительно локального среднего значения. Результат – конечные  сложные данные.

Каждый из этих колебательных режимов может быть представлен функцией внутренней моды (intrinsic mode function - IMF).

IMF представляет собой колебательный режим, как часть простой гармонической функции, но вместо постоянной амплитуды и частоты, как в простой гармонике, у IMF могут быть переменная амплитуда и частота, как функции независимой переменной (времени, координаты, и пр.). Любую функцию и любой произвольный сигнал можно разделить на семейство функций IMF.

Пример разложения цифрового массива модельного сигнала y(k), представленного на слайде. Сигнал смоделирован суммой трех нестационарных по амплитуде гармоник различной частоты на интервале отсчетов по k от 0 до 200, и продлен на начальном и конечном участках на интервалы tp=4 для задания начальных и конечных условий преобразования и устранения ошибок преобразования на концевых интервалах обрабатываемого массива данных.

Рис. 2.

Процесс отсева функций IMF.  Алгоритм эмпирической декомпозиции сигнала складывается из следующих операций его преобразования.

   Операция 1. Идентифицируем по координатам и амплитудам все локальные экстремумы (максимумы и минимумы) сигнала . Группируем раздельно массивы векторов координат (номеров отсчетов) хmax(k) и соответствующих амплитудных значений уmax(k) максимумов, и аналогичные массивы векторов xmin(k) и ymin(k) минимумов всех выделенных экстремумов.

Рис. 3

Операция 2. Кубическим (или каким либо другим) сплайном вычисляем верхнюю и нижнюю огибающие сигнала по выделенным максимумам и минимумам, как это показано на рисунке (красный и синий цвет соответственно). Определяем функцию средних значений m1(k) между огибающими (черный цвет) и находим первое приближение к первой функции IMF:

h1(k) = y(k) – m1(k). 

 

Рис. 4.

Операция 3. Повторяем операции 1 и 2, принимая вместо y(k) функцию h1(k), и находим второе приближение к первой функции IMF – функцию h2(k).

h2(k) = h1(k) – m2(k).

 Аналогично находим третье и последующие приближения к первой функции IMF. По мере увеличения количества итераций функция mi(k), равно как и функция hi(k), стремится к неизменяемой форме. С учетом этого, естественным критерием останова итераций является задание определенного предела по нормализованной квадратичной разности между двумя последовательными операциями приближения, определяемой как

Правило останова

Пример изменения значений d в процессе итераций приведен на рис. 5 При пороге d = 0.0001 количество итераций, как правило, не превышает 6-8.

Результат разложения

Последнее значение hi(k) итераций принимается за наиболее высокочастотную функцию с1(k) = hi(k) семейства IMF, которая непосредственно входит в состав исходного сигнала y(k). Это позволяет вычесть с1(k) из состава сигнала и оставить в нем более низкочастотные составляющие:

Рис. 6.

r1(k) = y(k) – c1(k).           

Функция r1(k) обрабатывается как новые данные по аналогичной методике с нахождением второй функции IMF – c2(k), после чего процесс продолжается:

r2(k) = r1(k) – c2(k),   и т.д.                                              

Таким образом, достигается декомпозиция сигнала в n – эмпирическом приближении:    y(t) =   cn(t)+rn(t).

Критерии останова процесса декомпозиции

  1.  Остаток rn(k) во всем интервале задания сигнала становятся несущественными по своим значениям по сравнению с сигналом.
  2.  Остаток rn(k) становится монотонной функцией, из которой больше не может быть извлечено функций IMF.
  3.  Так как в конечном итоге суммирование всех функций IMF (реконструкция сигнала) должно давать исходный сигнал, то можно останавливать разложение заданием относительной погрешности среднеквадратической реконструкции (без учета остатка rn(k)) .
  4.  По мере увеличения количества функций IMF относительная среднеквадратическая погрешность реконструкции достаточно сложных и протяженных сигналов уменьшается, но, как правило, имеет определенный минимум. По-видимому, это определяется попытками алгоритма разложить остаток на функции, частично компенсирующие друг друга. Соответственно, останов программы может выполняться, если следующая выделенная функция IMF увеличивает погрешность реконструкции.

Практический критерий останова процесса декомпозиции

Другими словами, остановка декомпозиции сигнала должна происходить при максимальном «выпрямлении» остатка, т.е. превращения его в тренд сигнала по интервалу задания с числом экстремумов не более 3. Даже для данных с нулевым средним значением конечный остаток может отличаться от нуля. Чтобы применять метод EMD, центрирования данных не требуется, метод нуждается только в локализациях экстремумов. Нулевая линия для каждого компонента декомпозиции будет сформирована процессом отсеивания.

Пример полной декомпозиции с остановом по критерию 2.

На верхнем графике рисунка приведен входной сигнал преобразования (красным) и сигнал обратной реконструкции (пунктиром) суммированием функций разложения ci (c1-c5).

Рис. 7

Компоненты EMD обычно физически значимы, поскольку характеристические параметры функций IMF определяются материальными данными.

Ортогональность базиса декомпозиции

Входной сигнал y(k) в соответствии с выражением  раскладывается по базису, который, не определен аналитически, но удовлетворяет всем традиционным требованиям базиса. На основании проверки на модельных и опытных данных он является:

- законченным и сходящимся (сумма всех функций IMF и остатка равна исходному сигналу и не зависит от критериев останова итераций),

- ортогональным (все IMF и остаток ортогональны друг другу),

- единственным.

Главное достоинство метода

Метод разложения является адаптивным, так как получен непосредственно из анализируемых данных эмпирическим методом.

 Ортогональность базиса легко может быть проверена скалярным произведением любых пар компонентов IMF. Сумма  всех компонентов IMF, включая остаток, должна реконструировать входной сигнал и может использоваться для определения ошибки декомпозиции. Как правило, наибольшие локальные ошибки декомпозиции наблюдаются на концевых участках входного массива данных. Для исключения ошибок рекомендуется задавать интервалы начальных и конечных условий, а сигнал на этих интервалах формировать какой-либо функцией прогнозирования, или продлевать (четно или нечетно) функцией самого сигнала.


EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

865. Полномочия Верховной Рады Украины 37 KB
  Назначение очередных и внеочередных выборов в органов местного самоуправления. Предоставление согласия на назначение Президентом Украины на должность Генерального прокурора Украины; высказывание недоверия Генеральному прокурору Украины, которая имеет следствием его отставку из должности.
866. Организация и планирование производства. Управление дистанцией сигнализации и связи 782.5 KB
  Расчет технического штата для обслуживания устройств СЦБ и связи. Поездная и станционная радио и громко говорящая связь. Расчет эксплуатационного штата телеграфно-телефонной станции. Расчет штата производственной базы дистанции. Четырех недельный план-график технического обслуживания устройств СЦБ чётной сортировочной горки ГАЦ.
867. Алгоритм его свойства. Знакомство с программной средой Турбо Паскаль. 178.5 KB
  Ввести понятие алгоритма, блок - схемы, рассмотреть свойства и типы алгоритма. Формировать умения составлять алгоритм, используя его свойства, блок-схемы. Ознакомить с разновидностями блок-схемами. Познакомить с программной средой Турбо Паскалем.
868. Финансово-бюджетное и денежно-кредитное регулирование экономики 166.5 KB
  Финансовая политика государства и его особенности в период становления рыночных отношений. Государственный бюджет как инструмент регулирования экономики. Налоговое регулирование экономики. Финансирование дефицита государственного бюджета.
869. Корреляционно-регрессионный анализ методик лечения больных 224 KB
  Коэффициент Корреляции Кендалла. Выявление статистической связи. Коэффициент корреляции Пирсона. Статистическая взаимосвязь двух или нескольких случайных величин. Суммарное число наблюдений, следующих за текущими наблюдениями с большим значением рангов.
870. Биологическое оружие 186 KB
  Начало применения биологического оружия. При наиболее распространенных формах заболеваниях, смерть наступает в 30 процентах случаев.Заражение сибирской язвой происходит через контакт кожи со спорами.
871. Административное право 382.49 KB
  Административно-правовые гарантии реализации прав граждан. Основы административно-правового статуса предприятий и учреждений. Ознакомление студентов с основными понятиями и категориями административного права. Исполнительно-распорядительная деятельность. Приостановление действия (исполнения) акта управления.
872. Анализ свойств линейной непрерывной статической системы 376 KB
  Расчет передаточной функции замкнутой системы по управлению. Исходная структурная схема (f=0). Элементарные правила преобразования структурных схем. Алгоритм преобразования для многоконтурных систем. Заменяем последовательное соединение в прямой цепи. Расчет передаточной функции по возмущению (U=0). Определение устойчивости замкнутой системы по теореме Ляпунова.
873. Общие принципы регуляции в живых организмах 62 KB
  Упорядоченная совокупность объектов (элементов системы), взаимодействующих и взаимосвязанных между собой. Сравнительная характеристика гуморального и нервного механизмов регуляции