75609

МАТЕМАТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА. МЕТОДЫ ИССЛЕДОВАНИЯ ПОДОБИЯ СИГНАЛОВ. КОРРЕЛЯЦИЯ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Элемент из этого числового набора называется компонентом вектора. Это означает что анализ вектора f аналогичен анализу функции непрерывного сигнала ft если она не имеет точек разрыва. Для этого необходимо определить понятия: расстояния между векторами скалярное расстояние норма вектора...

Русский

2015-01-15

136 KB

3 чел.

ОС.Лекция 2

МАТЕМАТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА. МЕТОДЫ ИССЛЕДОВАНИЯ ПОДОБИЯ СИГНАЛОВ. КОРРЕЛЯЦИЯ.

Методы цифровой обработки обоснованы в [1] на основе аналогии с векторным представлением дискретизированных сигналов. Изложение этого подхода приведено ниже.

При малом интервале дискретизации можно достаточно точно воспроизвести аналоговый сигнал по цифровому сигналу. Если временной интервал [a,b] разделить на одинаковые отрезки, а сигнал f, уже подвергшийся дискретизации, перевести в цифровую форму и записать в виде ряда значений N точек

                                  f=(f1, f2, …fN),

то f можно представить N-мерным вектором (N-мерным вектором называется величина, представленная набором N числовых значений, расположенных в определенном порядке). Элемент из этого числового набора называется компонентом вектора.

Качество приближения функции f(t) будет зависеть от числа N. Если увеличивать N, то степень приближения будет тоже увеличиваться. Если увеличивать N до бесконечности, то вся информация, содержащаяся в f(t), будет содержаться в f. Это означает, что анализ вектора f  аналогичен анализу  функции непрерывного сигнала f(t), если она не имеет точек разрыва.

Двумерный вектор соответствует одной точке в двумерном пространстве, т.е. на плоскости, трехмерный вектор тоже соответствует одной точке, но в трехмерном пространстве, а N-мерный вектор – одной точке в N-мерном пространстве. Назовем это пространство бесконечно большой размерности пространством функций.

Цель этой аналогии заключается в том, чтобы объяснить физический смысл коэффициента корреляции как показателя степени близости функций, и прицип разложения любой произвольной функции сумму составляющих (это объяснит, например, почему возможно разложение любой функции в ряд Фурье или какой-либо другой и по каким функциям можно разложить, а по каким нельзя).

Для этого необходимо определить понятия: расстояния между векторами, скалярное расстояние, норма вектора.

Определение степени близости функций

Рассмотрим задачу определения взаимоотношения между сигналами f(t) и g(t) по их векторному представлению. Конечно, два значения сигнала весьма слабо характеризуют сигналы, но, как будет показано дальше, выводы, сделанные по двум выборкам могут быть распространены на случай сколь угодно большого количества выборок.

Итак, определим векторы, содержащие по два элемента из выборки каждого сигнала, иначе говоря, двумерные векторы. Обозначим их как f и g:

                        f=( f1 , f2),      g=( g1 , g2  )

Если сигналы выразить через векторы, то исследование отношений между сигналами будет равносильно исследованию отношений между векторами. Исследование может заключаться в определении степени близости функций. В векторном представлении это соответствует расстоянию между векторами. Обозначим d(f,g) расстояние между векторами f и g. Чем меньше значение d, тем ближе векторы f и g, а, значит, и сильнее между ними взаимосвязь.

Величину вектора f (абсолютное значение) обозначим как   || f ||. Используя компоненты вектора f, получим:

|| f || называют также нормой вектора f.

Итак, из рис. 1 видно, что расстояние между векторами f и g есть норма вектора fg. Это можно записать, используя компоненты векторов, в следующем виде:

Однако, норма вектора характеризует лишь величину вектора разности, но не учитывает его направления.

Для выражения связи между векторами используют скалярное произведение. Скалярное произведение между   f и g   обозначается как   и определяется как

Следовательно

Обозначим эту величину

, следовательно

Величина r выражает силу связи между векторами f и g   через угол между ними. Если направления f и g   совпадают, т.е. , то r принимает максимальное значение, равное 1. С увеличением угла  значение r уменьшается. Если r=0, т.е. =0, то векторы f и g взаимно перпендикулярны. Назовем величину r коэффициентом корреляции.

Как видно из приведенного выше соотношения, r зависит от угла между векторами и не зависит от нормы векторов. Выразим скалярное произведение, используя компоненты вектора:

Чтобы вывести эту формулу, применим теорему косинусов для векторов:

Следовательно

Подставим полученные результаты в выражение коэффициента корреляции и представим r следующим образом:

Представляя это выражение через составляющие вектора, получим

Из этого соотношения можно вывести выражение для коэффициента корреляции в N-мерном пространстве:

Обобщив последнее соотношение можно вывести формулу для скалярного произведения функций. Используя соответствие вектор функция, сумма интеграл, определим скалярное произведение функций f(t) и g(t) на интервале [a,b] :

Скалярное произведение функции f(t) на саму себя:

Это означает, что f(t) имеет те же свойства, какими обладает многомерный вектор в векторном пространстве. То, что мы смогли определить скалярное произведение функций, означает также и то, что мы приняли и учли такое понятие, как угол между функциями. Если функции f(t) и g(t) в пространстве функций расположены под углом , то коэффициент корреляции можно определить так же, как и в случае векторов, используя норму и скалярное произведение:

Если записать подробно, то получим:

Это соотношение имеет довольно сложный вид, но принцип тот же, что и в случае векторов. Как и прежде, коэффициент корреляции показывает степень «похожести» функций. Причем r принимает значения от -1 до 1. Чем больше значение r по абсолютной величине, тем выше корреляция между функциями. Иначе говоря, они более похожи.

Однако стоит отметить, что коэффициент корреляции не является единственным показателем похожести функций.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

22655. Когерентність хвиль. Явище інтерференції. Інтереферометри 2.34 MB
  Інтереферометри Якщо при складанні двох коливань різніця фаз коливань хаотично змінюється за час спостереження то коливання називаються некогерентними. Тоді середня енергія результуючого коливання дорівнює сумі середніх енергій початкових коливань. амплітуди початкових коливань. Якщо при складанні двох коливань різніця фаз коливань зберігається за час спостереження то коливання називаються когерентними.
22656. Явище дифракції світла. Дифракція Фраунгофера. Дифракція Френеля 1.35 MB
  Дифракція Фраунгофера. Дифракція Френеля. Дифракція світла явище огинання світлом контурів тіл і відповідно проникнення світла в область геометричної тіні. Дифракція є проявом хвильових властивостей світла.
22657. Роздільна здатність оптичних приладів 70 KB
  Характеризує здатність давати зображення двох близько розташованих одна від одної точок обєкта рознесених в просторі. Найменша лінійна кутова відстань між двома точками починаючи з якої їх зображення зливаються і не розрізняються наз. Релей ввів критерій згідно до якого: зображення двох точок можна розрізнити якщо дифр. Предмет знаходиться на а зображення утворюється в фокальній площині об`єктива телескопа з фокусною відстанню f .
22658. Принципы объединения сетей на основе протоколов сетевого уровня 138.5 KB
  Протоколы сетевого уровня реализуется, как правило, в виде программных модулей и выполняются на конечных узлах-компьютерах, называемых хостами, а также на промежуточных узлах-маршрутизаторах, называемых шлюзами. Функции маршрутизаторов могут выполнять как специализированные устройства, так и универсальные компьютеры с соответствующим программным обеспечением.
22659. Інтерференція поляризованих променів при проходженні через кристали 89 KB
  Світло поширюється вздовж вісі OZ. Ніколь N1 забезпечує лінійно поляризоване світло в площині XOY. На пластинку падає лінійно поляризоване світлоко де розпадається на звичайний і незвичайний промені.векторів звичайної і незвичайної хвиль на вході в пластинку у вигляді: де різниця фаз між звичайним і не звичайним променями Склавши два останні рівняння отримаємо Розглянемо два випадки: 1 еліптично поляризоване світло.
22660. Явища обертання площини поляризації падаючого світла в речовинах 359 KB
  Явища обертання площини поляризації падаючого світла в речовинах Відомо що світло це поперечна хвиля тобто вона розповсюджується у напрямку  до площини що утворюють вектори E та H. Частковим випадком еліптичної поляризації є колова поляризація. Деякі речовини при проходженні через них світла можуть змінювати площину поляризації. Це пояснюється поворотом площини поляризації що здійснюється оптично активним зразком схема: Джерело поляризатор зразок аналізатор Розглянемо явище у різних середовищах: 1 Усі одновісні оптично активні...
22661. Основні закони випромінювання. Ф-ла Планка 381 KB
  Основні закони випромінювання. Закон СтефанаБольцмана для ачт : M=σT4 де М енергетична густина випромінення σконстанта Стеф. Закон зміщення Віна: Tλmax=b де bconst яка не залежить від темпер. Класичній підхід: ймовірність що енергія моди лежить в проміжку тоді отримуємо формулу РелеяДжинса: ; Планк: тоді: формула Планка З формули Планка можна отримати закон зміщення Віна і М Т4 при Закон Кіргофа: спектральна випромінююча здатність поглинаюча здатність Це відношення не залежить від природи...
22662. Квантування енергії лінійного гармонічного осцилятора 75 KB
  Модель гармонічного осцилятора : частинка коливається навколо положення рівноваги тоді ми можемо розкласти наш потенціал в ряд поблизу положення рівноваги x0=0. Тоді гамільтоніан для такої системи буде Щоб перейти від класичної системи до квантової необхідно від фізичних величин перейти до операторів тоді . Щоб його розвязати необхідно перейти до безрозмірних змінних тоді Розглянемо асимтотики цього рівняння: отримуєм при . Тоді підставляючи цей вираз у рівняння для U і роблячи деякі перетворення можна отримати вираз для...
22663. Явище радіоактивності. Види радіактивного розпаду 27.5 KB
  Види радіактивного розпаду. Ядра що підлягають такому розпаду наз. В процессі розпаду у ядра може змінюватись як атомний номер Z так і масове число A. Фізичною характеристикою розпаду є середній час життя ядер.