75610

РАЗЛОЖЕНИЕ ФУНКЦИЙ В ДЕЙСТВИТЕЛЬНЫЙ РЯД ФУРЬЕ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

В последнем соотношении колебание самого большого периода, представленное суммой cost и sint, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой

Русский

2015-01-15

282.5 KB

4 чел.

ОС. Лекция 4.

РАЗЛОЖЕНИЕ ФУНКЦИЙ В ДЕЙСТВИТЕЛЬНЫЙ РЯД ФУРЬЕ

Раньше было показано, что любую функцию f(t) можно представить в виде:

где   - ортонормированные функции.

Коэффициенты сk вычисляются по формуле:

Условие ортонормированности выполняется, если скалярное произведение любых двух функций, входящих в набор, равно нулю, а норма любой функции равна единице:

 

Разложение функции на интервале

Функцию f(t)  можно разложить по системе тригонометрических функций на отрезкеследующим образом:

Коэффициенты , как было показано ранее, можно выразить через скалярные произведения:


В общем виде функцию f(t) можно представить следующим образом:

Коэффициенты называют коэффициентами Фурье, а подобное представление функции называется разложением в ряд Фурье. Иногда такое представление называют действительным разложением в ряд Фурье, а коэффициенты — действительными коэффициентами Фурье. Термин «действительный» вводится для того, чтобы отличить представленное разложение от разложения в ряд Фурье в комплексной форме, о котором мы будем говорить позже. Как уже было сказано раньше, произвольную функцию можно разложить по системе ортогональных функций, даже если функции из этой системы не представляются в виде тригонометрического ряда. Обычно под разложением в ряд Фурье подразумевается разложение в тригонометрический ряд. Если коэффициенты Фурье выразить через , получим:

Поскольку при k = 0 cos(kt) = 1, то константа a0/2 выражает общий вид коэффициента ak при k = 0.

В последнем соотношении  колебание самого большого периода, представленное суммой cost и sint, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой. Колебание с периодом, равным 1/3 основного периода, называют третьей гармоникой и т.д. Как видно из соотношения (5.1) а0 является постоянной величиной, выражающей среднее значение функции f(t). Если функция f(t) представляет собой электрический сигнал, то а0 представляет его постоянную составляющую. Следовательно, все остальные коэффициенты Фурье выражают его переменные составляющие.

Первая гармоника является периодической функцией с периодом 2p. Прочие гармоники также имеют период, кратный 2p. Исходя из этого, при формировании сигнала из составляющих ряда Фурье мы, естественно, получим периодическую функцию с периодом 2p. А если это так, то разложение в ряд Фурье — это, собственно говоря, способ представления периодических функций.

Итак, каждая из гармоник, представленных рядом Фурье, представляет собой сумму вида a*cos(x)+b*sin(x). Эта сумма может быть преобразована к виду :

Лемма. Если сумма квадратов двух действительных чисел равна единице, то одно из этих чисел можно рассматривать как косинус, а другое как синус некоторого угла.

Другими словами, если а2 + b2 = 1, то существует угол φ, такой, что

а = cos φ;  b = sin φ.

Прежде чем доказывать эту лемму, поясним ее на следующем примере:

( \/3/2 )2 + ( 1/2 )2 = 3/4 + 1/4 = 1

Поэтому существует угол φ,  такой,  что   \/3/2 = cos φ;   1/2 = sin φ.

В качестве φ в данном случае можно  выбрать любой   из  углов 30°, 30° ± 360°, 30° ± 2 • 360° и т. д.

Доказательство леммы.

Рассмотрим вектор с координатами (а, b). Поскольку а2 + b2 = 1, длина этого вектора равна 1. Но в таком случае его координаты должны быть равны cos φ и sin φ, где φ — угол, который образует данный вектор с осью абсцисс.

Итак, а = cos φ; b =sin φ, что и требовалось доказать.

Доказанная лемма позволяет преобразовать выражение  a sin х + b cos х к более удобному для изучения виду.

Прежде всего вынесем за скобки выражение \/ а2 + b2

Поскольку

первое из чисел    и     можно   рассматривать   как   косинус   некоторого   угла   φ , а второе как синус того же угла φ:

Но в таком случае

a sin х + b cos х = ( cos φ sin х + sin φ cos х) = sin ( x + φ )

Итак,

a sin х + b cos х  = sin ( x + φ ) , где угол φ определяется из условий


Разложение функции, представленной в дискретизированном виде, в ряд Фурье на интервале

В дискретизированном виде (т.е. в виде набора дискретных значений или, что то же, в виде числового массива, содержащего N значений) функция f(t) на интервале  будет иметь вид:

где N – количество дискретных значений сигнала. При  дискретизированная функция будет приближаться к непрерывной f(t).

Разложение в ряд Фурье будет иметь вид, аналогичный тому, который был получен для случая непрерывного сигнала:

а коэффициенты  :

;

;

.

и коэффициенты a0, ak и bk:

а общий вид разложения:

Ниже приведена программа вычисления коэффициентов разложения для функции y(t)=t .

% Разложение функции t3 в ряд Фурье

%в дискретизированном виде на интервале  

N=255; %Количество отсчетов (элементов массива y(t))

K=16; %Количество членов ряда Фурье

T=pi; %диапазон изменения функции f(i) равен +/-T

kp=2.4; %количество периодов гармонической функции

y=zeros(1,N+1);

Sa = zeros(1,K);

Sb = zeros(1,K);

p=3;% показатель степени функции t^p

f=zeros(1,N+1);

Sa0=0;

for i=1:N+1  

  f(i)=sin(2*pi*kp*(i-1)/N); % гармоническая функция  

 %  f(i)= (2*T*(((i-1-N/2))/N))^p; %функция t^p     

   Sa0=Sa0+f(i);

end

Sa0=Sa0/N

for i=1:N+1

   for j=1:K

       Sa(j) = (Sa(j)+f(i)*cos((j)*2*pi*(i-1-N/2)/N));

       Sb(j) = (Sb(j)+f(i)*sin((j)*2*pi*(i-1-N/2)/N));        

   end

  

end

for j=1:K

   Sa(j)=Sa(j)*(1/(N/2));

   Sb(j)=Sb(j)*(1/(N/2));

end

%Вычисление и отображение спектра амплитуд (начало)

for j=1:K

Sab(j)=sqrt(Sa(j)^2+Sb(j)^2);

end

i=1:K;

figure

plot(i,Sab);

stem(Sab(1:K)); %вывод графика  дискретной последовательности данных

axis([1 8 -0.2 1.2]);%задание осей: [xmin xmax ymin ymax]

title('Амплитуды частотных составляющих спектра');

xlabel('Количество периодов')

axis tight;

%Вычисление и отображение спектра амплитуд (конец)

y=zeros(1,N+1);

for i=1:N+1

   for j=1:K

       y(i)= y(i)+Sa(j)*cos(j*2*pi*(i-1-N/2)/N)+Sb(j)*sin(j*2*pi*(i-1-N/2)/N);        

   end  

    y(i)=Sa0+y(i);

end

i=1:N+1;

figure

plot(i,f);

axis tight;

hold on;

plot(i,y,'r-')

hold off;

pause;

close all;

Рис. 1. Исходная и восстановленная функция t3 при N=128, K=32,p=3.

Примечание. Для разложения четной функции из ряда можно исключить члены, содержащие синусы, для разложения  нечетной –  косинусы. Но можно оставить ряд разложения полностью.

Разложение функции на интервале [-T/2,T/2]

До этого момента мы рассматривали функцию переменной t на отрезке   [-p,p]. В случае периодического сигнала с периодом 2p мы брали этот интервал за основной. В общем случае периодического сигнала с периодом Т при разложении в ряд Фурье мы должны использовать интервал [-Т/2, Т/2]. Если интервал [-p,p] расширить (или сократить) до интервала [-T/2, Т/2], то и период первой гармоники увеличится (или уменьшится) от 2 p до Т. Поскольку кратность этого преобразования равна (Т/2) *p, то составляющие первой гармоники примут вид:

Для составляющих k-й гармоники можно записать:

Следовательно, если функцию f(t) разложить в ряд Фурье на интервале [-Т/2, Т/2], получим:

Если обозначить угловую частоту через , то поскольку , последнее выражение можно записать и в таком виде:

В соотношении, определяющем коэффициенты Фурье на отрезке

произведем замену переменной

а также замену отрезка, на котором берется интеграл

Оставив функцию f(t) без изменения, получим

Аналогичным образом выводится следующее соотношение:

Разложение функции, представленной в дискретизированном виде, в ряд Фурье на интервале [-T,T]

В дискретизированном виде (т.е. в виде набора дискретных значений или, что то же, в виде числового массива, содержащего N значений) функция f(t) на интервале [-T,T] будет иметь вид:

где N – количество дискретных значений сигнала. При  дискретизированная функция будет приближаться к непрерывной f(t).

Разложение в ряд Фурье будет иметь тот же вид, что и при разложении функции в непрерывной форме, а коэффициенты  :

;

;

.

и коэффициенты a0, ak и bk:

а общий вид разложения:

Ниже приведена программа вычисления коэффициентов разложения для функции y(t)=t .

% Разложение функции y(t)=tp в ряд Фурье

% в дискретизированном виде на интервале [0,T], например,

 

N=255; %Количество отсчетов (элементов массива y(t)=t)

K=64;%Количество членов ряда Фурье

T=pi;%диапазон изменения функции f(i)+/-T

kp=2.0

y=zeros(1,N+1);

Sa = zeros(1,K);

Sb = zeros(1,K);

p=3;%показатель степени функции t^p

f=zeros(1,N+1);

Sa0=0;

for i=1:N+1  

   f(i)=sin(2*pi*kp*(i-1)/N); % гармоническая функция   

  % f(i)= (T*(((i-1))/N))^p; %функция t^p, i-1, если p>0, i, если p<0       

   Sa0=Sa0+f(i);  

end

Sa0=Sa0/N

for i=1:N+1

   for j=1:K

       Sa(j) = (Sa(j)+f(i)*cos((j)*2*pi*(i-1)/N));

       Sb(j) = (Sb(j)+f(i)*sin((j)*2*pi*(i-1)/N));        

   end   

end

for j=1:K

   Sa(j)=Sa(j)*(1/(N/2));

   Sb(j)=Sb(j)*(1/(N/2));   

end

%Вычисление и отображение спектра амплитуд (начало)

for j=1:K

Sab(j)=sqrt(Sa(j)^2+Sb(j)^2);

end

i=1:K;

figure

plot(i,Sab);

stem(Sab(1:K)); %вывод графика  дискретной последовательности данных

axis([1 8 -0.2 1.2]);%задание осей: [xmin xmax ymin ymax]

title('Амплитуды частотных составляющих спектра');

xlabel('Количество периодов')

axis tight;

%Вычисление и отображение спектра амплитуд (конец)

y=zeros(1,N+1);

for i=1:N+1

   for j=1:K

       y(i)= y(i)+Sa(j)*cos(j*2*pi*(i-1-N)/N)+Sb(j)*sin(j*2*pi*(i-1-N)/N);        

   end  

    y(i)=Sa0+y(i);

end

i=1:N+1;

figure

plot(i,f);

axis tight;

hold on;

plot(i,y,'r-')

hold off;

pause;

close all;

   

Рис. 2. Исходная и восстановленная функция y=tp после разложения в ряд Фурье, N=128, T=5, p=4,K=16.


 

А также другие работы, которые могут Вас заинтересовать

71727. Изучение поля электрического диполя 887.5 KB
  Цель работы: исследовать поле модели электрического диполя. Основные понятия теории электрического диполя Электрическим диполем называется система состоящая из двух равных по величине но противоположных по знаку точечных зарядов расположенных на расстоянии друг от друга.
71728. Измерение осмотической устойчивости эритроцитов методом светорассеяния 93.5 KB
  Виды эритроцитов в зависимости от формы. Основная функция эритроцитов заключается в транспортировке кислорода и углекислоты. во взвешенном состоянии или в изотоническом растворе соли равновесном для эритроцитов они имеют форму двояковогнутого диска и называются дискоцитами.
71729. Использование электроизмерительных приборов для измерения электрических величин 697 KB
  Закрепить умения измерения физических величин косвенными методами на основе прямых измерений нескольких величин. Величины характеризующие прохождение электрического тока по цепи и единицы их измерения.
71730. Снятие спектральной характеристики уха на пороге слышимости 665 KB
  Субъективной характеристикой звука является громкость (Е), которая характеризует уровень слухового ощущения. Слуховое ощущение обусловлено чувствительностью уха к действию звуковой волны. Чувствительность, в свою очередь, зависит от физических характеристик звуковой волны...
71731. Методы оценки погрешностей при прямых и косвенных измерениях количественных значений различных величин 150.5 KB
  Научиться обрабатывать результаты прямых и косвенных измерений с учетом случайных и систематических погрешностей. Состояние производства и научных исследований предъявляют постоянно растущие требования к точности измерений которые удовлетворяются не только за счет создания...
71732. Методы статистической обработки выборочных данных 165 KB
  Что показывает корреляционная зависимость между статистическими совокупностями Характеристика корреляционной зависимости по значению коэффициента парной корреляции. Связь коэффициентов уравнений регрессии с коэффициентом корреляции и их геометрический смысл.
71733. Основы спектроскопии и колориметрии 2.64 MB
  Охарактеризуйте электромагнитные волны различных диапазонов по способу получения того или иного вида излучения. Назовите виды спектров излучения и поглощения. Как изменяется спектр излучения твердого тела при нагревании Как связаны спектры излучения и поглощения с атомным...
71734. Основы использования поляризованного света в медико-биологических исследованиях 148.5 KB
  Цель работы: Познакомиться со способами получения поляризованного света. Какова природа света Чем естественный свет отличается от поляризованного Укажите способы получения поляризованного света. Что общего и в чем отличие в получении поляризованного света после прохождения призмы Николя...
71735. Изучение законов радиоактивного излучения 183.5 KB
  Чем объясняется ослабление бета-излучения при прохождении через вещество Охарактеризовать способность вещества поглощать ионизирующее излучение. Методы регистрации ионизирующего излучения. В качестве еще одной из характеристик поглощения бета-излучения веществом используют слой...