75615

ОПТИМАЛЬНАЯ И СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Оптимальная фильтрация Оптимальное выделение сигнала из шума можно проводить различными методами в зависимости от того какая задача ставится: обнаружение сигнала сохранение формы сигнала и т. В каждом методе оптимальной фильтрации вводится понятие критерия оптимальности согласно которому строится оптимальный алгоритм обработки сигнала. Оптимальный фильтр КолмогороваВинера Фильтры низкой частоты высокой частоты и полосовые фильтры эффективны в том случае когда частотные спектры сигнала и шума не...

Русский

2015-01-15

170.5 KB

55 чел.

ОС. Лекция 9.

ОПТИМАЛЬНАЯ И СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ

Оптимальная фильтрация

Оптимальное выделение сигнала из шума можно проводить различными методами, в зависимости от того, какая задача ставится: обнаружение сигнала, сохранение формы сигнала и т.д. В каждом методе оптимальной фильтрации вводится понятие критерия оптимальности, согласно которому строится оптимальный алгоритм обработки сигнала.

Передаточная функция оптимального фильтра, предназначенного для обнаружения прямоугольного импульса длительностью

Блок-схема устройства

где  - интегратор,  - элемент временной задержки.

Рис. 4

Оптимальный фильтр в данном случае решает задачу обнаружения одиночного импульса конечной длительности. Форма и амплитуда импульса после фильтра будут искажены.


Оптимальный фильтр Колмогорова-Винера

Фильтры низкой частоты, высокой частоты и полосовые фильтры эффективны в том случае, когда частотные спектры сигнала и шума не перекрываются.

Наилучшее разделение сигнала и шума цифровыми методами обеспечивает оптимальный фильтр Колмогорова-Винера.

Частотная характеристика фильтра Колмогорова-Винера:

                              H(w) = Ws(w) / [Ws(w)+Wq(w)] 

где Ws(w) и Wq(w) - энергетические спектры (плотности мощности) сигнала и помех.

На рис. 1.9 и 1.10 приведены примеры фильтрации сигналов вида одиночного импульса и синусоидального сигнала ограниченной длительности.

                            А                                                             Б

                                               

Рис. 1.9. Исходный сигнал с шумом (А) и после фильтра (Б).

           А                                                                  Б

Рис. 1.10. Частотная характеристика  оптимального фильтра  (А) и сигнал после фильтра (Б).

Программа оптимального фильтра Колмогорова - Винера

A=20; %амплитуда сигнала

Q=20; %амплитуда шума

Fs=1024;

N=1024;%количество точек расчета

for k=1:N %цикл вычисления сигнала и шума

%s1(k)=A*exp(-0.00003*(k-500)^2.0); %колоколообразный сигнал

%s1(k)=A*sin(2*pi*12*k/1000.0)%синусоидальный сигнал

s1(k)=0;

if (k>400)&(k<600) % сигнал прямоугольной формы

  s1(k)=A;

end   

q(k)=Q*(randn(size(Fs))); %шум

x1(k)=s1(k)+q(k); % суммирование сигнала и шума

end

Y=fft(s1,N)/N; %БПФ сигнала без шума

SS1=Y.*conj(Y)/Fs; %спектр мощности сигнала без шума

Y1=fft(q,N)/L; %БПФ  шума

SS2=Y1.*conj(Y1)/N; %спектр мощности  шума  

for i=1:N    

H(i)=SS1(i)/(SS1(i)+SS2(i)); %передаточная функция оптимального %фильтра в частотной области

end  

i=1:N

XX1=fft(x1,N); %частотный спектр сигнала с шумом

Z=ifft(XX1.*H);   %свертка зашумленного сигнала с частотной характеристикой фильтра

%i=1:N 

%h=ifft(H); %импульсная характеристика фильтра Колмогорова-Винера

%XX2=conv(x1,h); %свертка зашумленного сигнала с импульсной характеристикой фильтра (второй способ)


Согласованная фильтрация

Цифровая обработка сигналов решает две основные задачи: обнаружение и определение параметров зашумленного сигнала. Задача может состоять и только в обнаружении сигнала, вид которого известен. В этом случае может быть использована согласованная фильтрация, т.е. применен фильтр, «настроенный» точно под ожидаемый вид сигнала.

Для того, чтобы вычислить выходной сигнал фильтра, нужно выполнить операцию свертки массива частотного спектра F входного сигнала с частотной характеристикой фильтра H с помощью функции обратного преобразования Фурье, например, Z=ifft(F.*H),  или операции свертки массива входного сигнала x с импульсным откликом фильтра h, например: Z = conv(x,h).

Частотная характеристика согласованного фильтра вычисляется "по частотному спектру сигнала" как комплексно сопряженный массив с помощью функции conj, например: Kf=conj(F). Здесь F- частотный спектр сигнала, Kf-частотная характеристика  фильтра, согласованного с этим сигналом.

Ниже приведен пример использования согласованного фильтра для обнаружения линейно-частотно-модулированного сигнала (ЛЧМ-сигнала). Здесь цифровая обработка применяется не к самому ЛЧМ-сигналу (рис.1.13А), а к его частотному спектру, который представляет собой широкополосный сигнал в частотной области ( рис. 1.13Б)

                  А                                                                 Б

              Рис. 1.13. Вид ЛЧМ-сигнала (А) и его частотного спектра (Б)                                                                          

На рис. 1.14А приведен вид сигнала на выходе согласованного фильтра для случая, когда ЛЧМ-сигнал точно соответствует по форме тому, на который настроен фильтр. При зашумлении ЛЧМ-сигнала или его спектра форма отклика на выходе согласованного фильтра сохранится (см. рис. 1.14Б), что и дает возможность обнаруживать ЛЧМ-сигнал на фоне шумов .

Обратите внимание, что форма сигнала, полученного с выхода согласованного фильтра, не имеет ничего общего с формой ЛЧМ-сигнала (и определить параметры ЛЧМ-сигнала  по нему невозможно). Кроме того, если

Рис. 1.14. Пример выходного сигнала согласованного фильтра при незашумленном (А) и зашумленном (Б) сигнале на входе                                                                              

ЛЧМ-сигнал будет отличаться по ширине полосы или по центральной частоте от того, на который "настроен" согласованный фильтр, то определить параметры ЛЧМ-сигнала по выходному сигналу согласованного фильтра будет сложно (см. рис. 1.15). На рис. 1.15А приведен вид выходного сигнала согласованного фильтра для случая, когда ЛЧМ-сигнал отличается по ширине полосы, на рис. 1.15Б  - по ширине полосы и по центральной частоте.

Рис. 1.15. Вид выходного сигнала согласованного фильтра для случаев, когда ЛЧМ-сигнал отличается по ширине полосы (А) и по ширине полосы и по центральной частоте (Б).                                                                         

Ниже приведена программа моделирования согласованной фильтрации ЛЧМ-сигналов.

Программа согласованного фильтра

%Моделирование и согласованная фильтрация ЛЧМ-сигнала

%для случая, когда принимаемый ЛЧМ-сигнал НЕ соответствует %ожидаемому по ширине полосы частот и/или по центральной частоте

%Для того, чтобы вычислить выходной сигнал фильтра, нужно %выполнить операцию свертки массива частотного спектра X1 %входного сигнала с частотной %характеристикой фильтра H с %помощью функции обратного преобразования Фурье, %например:Z=ifft(X1.*H)или операции свертки массива входного %сигнала с импульсным откликом фильтра,например: Z = conv(x1,h)

%Частотная характеристика СОГЛАСОВАННОГО фильтра вычисляется "по %частотному %спектру сигнала" с помощью функции conj, например: %Kf=conj(F1).

%Здесь F1- частотный спектр сигнала,Kf-частотная характеристика  фильтра,СОГЛАСОВАННОГО с этим сигналом. Обратите внимание, что %ФОРМА сигнала, полученного с выхода СОГЛАСОВАННОГО фильтра,

% отличается от формы ЛЧМ-сигнала

 

ts=1*10^(-2); %интервал времени

f0=9.5*10^3; %центральная частота

dfs=1*10^4; %девиация частоты

B=dfs*ts;

A0=1; %амплитуда

fn=f0-dfs/2; %нижняя частота

fv=f0+dfs/2; %верхняя частота

w0=2*pi*f0; %центральная угловая частота

wn=2*pi*fn; %нижняя угловая частота

fi0=0;

b0=2*pi*dfs/ts;

k=5; %количество точек за период максимальной частоты

dt=1/(k*(2*fv));  %шаг дискретности по времени

j=sqrt(-1);

N=round(ts/dt); %число отсчетов при заданном интервале времени и %шаге дискретности

N2=2^nextpow2(N); %вычисление ближайшего целого, %соответствующего 2^n (чтобы применять БПФ)

dt=ts/N2; %скорректированный шаг дискретности по времени

t=0:dt:dt*(N2-1);

s=A0*exp(-j*(wn*t+0.5*b0*t.^2+fi0));%моделирование первого ЛЧМ-сигнала

s1=A0*exp(-j*(wn*1.3*t+0.5*b0*1.1*t.^2+fi0));%моделирование второго  ЛЧМ-сигнала

%коэффициент 1.1 у b0 вызывает расширение полосы частот

%коэффициент 1.3 у wn будет вызывать смещение центральной частоты

figure

plot(t,s);

title('Первый ЛЧМ-сигнал')

xlabel('Номер отсчета')

figure

plot(t,s1);

title('Второй ЛЧМ-сигнал')

xlabel('Номер отсчета')

 

F1=fft(s,N2) % ППФ (прямое преобразование Фурье) первого

% ЛЧМ сигнала, т.е. получение его частотного спектра

FR1=(1/N2)*abs(F1); % амплитудный спектр

figure

plot(abs(F1));

A0*sqrt(pi/2/b0)/dt*2

title('Част. спектр первого ЛЧМ-сигнала')

xlabel('Номер отсчета')

F2=fft(s1,N2) % ППФ (прямое преобразование Фурье) второго ЛЧМ сигнала,

%т.е. получение его частотного спектра

FR2=(1/N2)*abs(F2); % амплитудный спектр

figure

plot(abs(F2));

A0*sqrt(pi/2/b0)/dt*2

title('Част. спектр втрого ЛЧМ-сигнала')

xlabel('Номер отсчета')

 

%реализация согласованной фильтрации

%фильтр согласован с первым ЛЧМ сигналом

shum=100;

%F1=fft(s,N2); % ППФ первого ЛЧМ сигнала

Kf=conj(F1); % частотная функция передачи согласованного фильтра %по первому ЛЧМ-сигналу

i=1:N2

F1(i)=F1(i)+shum*rand(1); %зашумляем спектр первого сигнала

F2(i)=F2(i)+shum*rand(1); %зашумляем спектр второго сигнала

figure

plot(i,F1);

title('Зашумл. част. спектр ЛЧМ-сигнала')

xlabel('Номер отсчета')

Fv=F2.*Kf; % свертка спектра второго ЛЧМ-сигнала с частотной %характеристикой согласованного фильтра. Вычисление сигнала %после фильтра как ifft(Fv).

%fftshift и пр. - для наглядности результата и приведения к "правильной" амплитуде

Sv=real(fftshift(ifft((Fv)))); %Shift zero-frequency component to center of spectrum

Sv1=A0*sqrt(B)*Sv/max(Sv);% приведение к "правильной" амплитуде  

Sv2=sqrt(B)*(1/N2)*(1/A0)*real(fftshift(ifft((Fv))));

% приведение к правильной амплитуде figure

plot(Sv2);

title('Спектр ЛЧМ после согласованного фильтра')

xlabel('Номер отсчета')

pause;

close all;


 

А также другие работы, которые могут Вас заинтересовать

25835. Структура и свойства конструкционных сплавов цветных металлов 973.5 KB
  Микроструктура металла (от микро... и лат. structura — строение), строение металла, выявляемое с помощью микроскопа (оптического или электронного). Микроскоп для исследования металла впервые применил П. П. Аносов (1831) при изучении булатной стали. Металлы и сплавы состоят из большого числа кристаллов неправильной формы (зёрен)
25836. Сплавы цветных металлов, обрабатываемые давлением 319.5 KB
  К цветным металлам и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение.
25837. Аудит операций на расчетном, валютном и других счетах банка 37.5 KB
  Целью аудиторской проверки операций по расчетному валютному и других счетам в банке является формирование мнения о достоверности бухгалтерской отчетности по разделу Денежные средства и соответствии применяемой методики учета денежных средств на счетах в банке действующим в Российской Федерации нормативным документам. Аудитор при проверке операций по счетам в банке должен учитывать основные нормативные документы регулирующие порядок проведения операций на расчетном валютном и других счетах в банках и бухгалтерский учет этих операций....
25838. Аудит прочих доходов и расходов 58.5 KB
  Целью аудиторской проверки прочих доходов и расходов является формирование мнения о правильности учета прочих доходов и расходов. Задача аудиторской проверки прочих доходов и расходов состоит из следующих вопросов на которые должен ответить аудитор: Бухгалтерский учет прочих доходов и расходов соответствует положениям нормативных актов Данные аналитического и синтетического учета по счету 91 Прочие доходы и расходы соответствуют данным главной книги и баланса Корреспонденция счетов по счету 91 Прочие доходы и расходы составлена в...
25839. Учет расчетов по авансам выданным и полученным 36.5 KB
  Согласно положениям Плана счетов Инструкции по применению Плана счетов бухгалтерский учет сумм полученных и или выданных авансов организуется на балансовых счетах связанных с расчетами за отгруженную продукцию выполненные работы оказанные услуги. Для учета сумм авансовых платежей предварительной оплаты к балансовым счетам открываются обособленные субсчета учета. В частности суммы выданных поставщикам и подрядчикам авансов учитываются обособленно на балансовом счете 60 Расчеты с поставщиками и подрядчиками суммы полученных...
25840. Аудит расчетов по авансам выданным 27.5 KB
  Так например выдавая авансы поставщику предприятие изымает из оборота денежные средства до момента поступления ТМЦ выполнения работ оказания услуг также возрастает вероятность непоступления данных ценностей на предприятие вопреки договору поставки. На счете 61 €œРасчеты по авансам выданным€ обобщается информация о расчетах по выданным авансам под поставку продукции либо под выполнение работ а также по оплате продукции и работ принятых от заказчиков по частичной готовности. Суммы выданных авансов а также произведенной оплаты и работ...
25841. Аудит расчетов по претензиям 30 KB
  Можно выделить несколько видов претензий: при выявлении ошибок в счетах поставщиков неправильно указаны тарифы и цены арифметические ошибки и др. Аудитору необходимо проверить: обоснованность своевременность и правильность оформления документов несоблюдение сроков предъявления претензий может быть использовано для сокрытия фактов хищения материальных ценностей так как при отказе в удовлетворении претензий числящиеся суммы списываются на издержки производства; обоснованность претензий предъявляемых к проверяемому предприятию в случае...
25842. Аудит расчетов по совместной деятельности 32.5 KB
  Внесенное товарищами имущество а также произведенная в результате совместной деятельности продукция и полученные от такой деятельности плоды признаются как правило их общей долевой собственностью. Прибыль полученная товарищами в результате их совместной деятельности распределяется пропорционально стоимости вкладов в общее дело если иное не предусмотрено договором или другим соглашением товарищей. Исходя из описанного подхода к организации деятельности простого товарищества в новом Плане счетов поиному решена схема учета операций...
25843. Структура и свойства сталей и чугунов 74 KB
  В углеродистых сталях углерод является основным элементом, определяющим структуру и свойства стали. С увеличением содержания углерода в стали возрастают твердость и предел прочности (НВ, ств), уменьшаются относительное удлинение, относительное сужение и ударная вязкость.