75615

ОПТИМАЛЬНАЯ И СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Оптимальная фильтрация Оптимальное выделение сигнала из шума можно проводить различными методами в зависимости от того какая задача ставится: обнаружение сигнала сохранение формы сигнала и т. В каждом методе оптимальной фильтрации вводится понятие критерия оптимальности согласно которому строится оптимальный алгоритм обработки сигнала. Оптимальный фильтр КолмогороваВинера Фильтры низкой частоты высокой частоты и полосовые фильтры эффективны в том случае когда частотные спектры сигнала и шума не...

Русский

2015-01-15

170.5 KB

72 чел.

ОС. Лекция 9.

ОПТИМАЛЬНАЯ И СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ

Оптимальная фильтрация

Оптимальное выделение сигнала из шума можно проводить различными методами, в зависимости от того, какая задача ставится: обнаружение сигнала, сохранение формы сигнала и т.д. В каждом методе оптимальной фильтрации вводится понятие критерия оптимальности, согласно которому строится оптимальный алгоритм обработки сигнала.

Передаточная функция оптимального фильтра, предназначенного для обнаружения прямоугольного импульса длительностью

Блок-схема устройства

где  - интегратор,  - элемент временной задержки.

Рис. 4

Оптимальный фильтр в данном случае решает задачу обнаружения одиночного импульса конечной длительности. Форма и амплитуда импульса после фильтра будут искажены.


Оптимальный фильтр Колмогорова-Винера

Фильтры низкой частоты, высокой частоты и полосовые фильтры эффективны в том случае, когда частотные спектры сигнала и шума не перекрываются.

Наилучшее разделение сигнала и шума цифровыми методами обеспечивает оптимальный фильтр Колмогорова-Винера.

Частотная характеристика фильтра Колмогорова-Винера:

                              H(w) = Ws(w) / [Ws(w)+Wq(w)] 

где Ws(w) и Wq(w) - энергетические спектры (плотности мощности) сигнала и помех.

На рис. 1.9 и 1.10 приведены примеры фильтрации сигналов вида одиночного импульса и синусоидального сигнала ограниченной длительности.

                            А                                                             Б

                                               

Рис. 1.9. Исходный сигнал с шумом (А) и после фильтра (Б).

           А                                                                  Б

Рис. 1.10. Частотная характеристика  оптимального фильтра  (А) и сигнал после фильтра (Б).

Программа оптимального фильтра Колмогорова - Винера

A=20; %амплитуда сигнала

Q=20; %амплитуда шума

Fs=1024;

N=1024;%количество точек расчета

for k=1:N %цикл вычисления сигнала и шума

%s1(k)=A*exp(-0.00003*(k-500)^2.0); %колоколообразный сигнал

%s1(k)=A*sin(2*pi*12*k/1000.0)%синусоидальный сигнал

s1(k)=0;

if (k>400)&(k<600) % сигнал прямоугольной формы

  s1(k)=A;

end   

q(k)=Q*(randn(size(Fs))); %шум

x1(k)=s1(k)+q(k); % суммирование сигнала и шума

end

Y=fft(s1,N)/N; %БПФ сигнала без шума

SS1=Y.*conj(Y)/Fs; %спектр мощности сигнала без шума

Y1=fft(q,N)/L; %БПФ  шума

SS2=Y1.*conj(Y1)/N; %спектр мощности  шума  

for i=1:N    

H(i)=SS1(i)/(SS1(i)+SS2(i)); %передаточная функция оптимального %фильтра в частотной области

end  

i=1:N

XX1=fft(x1,N); %частотный спектр сигнала с шумом

Z=ifft(XX1.*H);   %свертка зашумленного сигнала с частотной характеристикой фильтра

%i=1:N 

%h=ifft(H); %импульсная характеристика фильтра Колмогорова-Винера

%XX2=conv(x1,h); %свертка зашумленного сигнала с импульсной характеристикой фильтра (второй способ)


Согласованная фильтрация

Цифровая обработка сигналов решает две основные задачи: обнаружение и определение параметров зашумленного сигнала. Задача может состоять и только в обнаружении сигнала, вид которого известен. В этом случае может быть использована согласованная фильтрация, т.е. применен фильтр, «настроенный» точно под ожидаемый вид сигнала.

Для того, чтобы вычислить выходной сигнал фильтра, нужно выполнить операцию свертки массива частотного спектра F входного сигнала с частотной характеристикой фильтра H с помощью функции обратного преобразования Фурье, например, Z=ifft(F.*H),  или операции свертки массива входного сигнала x с импульсным откликом фильтра h, например: Z = conv(x,h).

Частотная характеристика согласованного фильтра вычисляется "по частотному спектру сигнала" как комплексно сопряженный массив с помощью функции conj, например: Kf=conj(F). Здесь F- частотный спектр сигнала, Kf-частотная характеристика  фильтра, согласованного с этим сигналом.

Ниже приведен пример использования согласованного фильтра для обнаружения линейно-частотно-модулированного сигнала (ЛЧМ-сигнала). Здесь цифровая обработка применяется не к самому ЛЧМ-сигналу (рис.1.13А), а к его частотному спектру, который представляет собой широкополосный сигнал в частотной области ( рис. 1.13Б)

                  А                                                                 Б

              Рис. 1.13. Вид ЛЧМ-сигнала (А) и его частотного спектра (Б)                                                                          

На рис. 1.14А приведен вид сигнала на выходе согласованного фильтра для случая, когда ЛЧМ-сигнал точно соответствует по форме тому, на который настроен фильтр. При зашумлении ЛЧМ-сигнала или его спектра форма отклика на выходе согласованного фильтра сохранится (см. рис. 1.14Б), что и дает возможность обнаруживать ЛЧМ-сигнал на фоне шумов .

Обратите внимание, что форма сигнала, полученного с выхода согласованного фильтра, не имеет ничего общего с формой ЛЧМ-сигнала (и определить параметры ЛЧМ-сигнала  по нему невозможно). Кроме того, если

Рис. 1.14. Пример выходного сигнала согласованного фильтра при незашумленном (А) и зашумленном (Б) сигнале на входе                                                                              

ЛЧМ-сигнал будет отличаться по ширине полосы или по центральной частоте от того, на который "настроен" согласованный фильтр, то определить параметры ЛЧМ-сигнала по выходному сигналу согласованного фильтра будет сложно (см. рис. 1.15). На рис. 1.15А приведен вид выходного сигнала согласованного фильтра для случая, когда ЛЧМ-сигнал отличается по ширине полосы, на рис. 1.15Б  - по ширине полосы и по центральной частоте.

Рис. 1.15. Вид выходного сигнала согласованного фильтра для случаев, когда ЛЧМ-сигнал отличается по ширине полосы (А) и по ширине полосы и по центральной частоте (Б).                                                                         

Ниже приведена программа моделирования согласованной фильтрации ЛЧМ-сигналов.

Программа согласованного фильтра

%Моделирование и согласованная фильтрация ЛЧМ-сигнала

%для случая, когда принимаемый ЛЧМ-сигнал НЕ соответствует %ожидаемому по ширине полосы частот и/или по центральной частоте

%Для того, чтобы вычислить выходной сигнал фильтра, нужно %выполнить операцию свертки массива частотного спектра X1 %входного сигнала с частотной %характеристикой фильтра H с %помощью функции обратного преобразования Фурье, %например:Z=ifft(X1.*H)или операции свертки массива входного %сигнала с импульсным откликом фильтра,например: Z = conv(x1,h)

%Частотная характеристика СОГЛАСОВАННОГО фильтра вычисляется "по %частотному %спектру сигнала" с помощью функции conj, например: %Kf=conj(F1).

%Здесь F1- частотный спектр сигнала,Kf-частотная характеристика  фильтра,СОГЛАСОВАННОГО с этим сигналом. Обратите внимание, что %ФОРМА сигнала, полученного с выхода СОГЛАСОВАННОГО фильтра,

% отличается от формы ЛЧМ-сигнала

 

ts=1*10^(-2); %интервал времени

f0=9.5*10^3; %центральная частота

dfs=1*10^4; %девиация частоты

B=dfs*ts;

A0=1; %амплитуда

fn=f0-dfs/2; %нижняя частота

fv=f0+dfs/2; %верхняя частота

w0=2*pi*f0; %центральная угловая частота

wn=2*pi*fn; %нижняя угловая частота

fi0=0;

b0=2*pi*dfs/ts;

k=5; %количество точек за период максимальной частоты

dt=1/(k*(2*fv));  %шаг дискретности по времени

j=sqrt(-1);

N=round(ts/dt); %число отсчетов при заданном интервале времени и %шаге дискретности

N2=2^nextpow2(N); %вычисление ближайшего целого, %соответствующего 2^n (чтобы применять БПФ)

dt=ts/N2; %скорректированный шаг дискретности по времени

t=0:dt:dt*(N2-1);

s=A0*exp(-j*(wn*t+0.5*b0*t.^2+fi0));%моделирование первого ЛЧМ-сигнала

s1=A0*exp(-j*(wn*1.3*t+0.5*b0*1.1*t.^2+fi0));%моделирование второго  ЛЧМ-сигнала

%коэффициент 1.1 у b0 вызывает расширение полосы частот

%коэффициент 1.3 у wn будет вызывать смещение центральной частоты

figure

plot(t,s);

title('Первый ЛЧМ-сигнал')

xlabel('Номер отсчета')

figure

plot(t,s1);

title('Второй ЛЧМ-сигнал')

xlabel('Номер отсчета')

 

F1=fft(s,N2) % ППФ (прямое преобразование Фурье) первого

% ЛЧМ сигнала, т.е. получение его частотного спектра

FR1=(1/N2)*abs(F1); % амплитудный спектр

figure

plot(abs(F1));

A0*sqrt(pi/2/b0)/dt*2

title('Част. спектр первого ЛЧМ-сигнала')

xlabel('Номер отсчета')

F2=fft(s1,N2) % ППФ (прямое преобразование Фурье) второго ЛЧМ сигнала,

%т.е. получение его частотного спектра

FR2=(1/N2)*abs(F2); % амплитудный спектр

figure

plot(abs(F2));

A0*sqrt(pi/2/b0)/dt*2

title('Част. спектр втрого ЛЧМ-сигнала')

xlabel('Номер отсчета')

 

%реализация согласованной фильтрации

%фильтр согласован с первым ЛЧМ сигналом

shum=100;

%F1=fft(s,N2); % ППФ первого ЛЧМ сигнала

Kf=conj(F1); % частотная функция передачи согласованного фильтра %по первому ЛЧМ-сигналу

i=1:N2

F1(i)=F1(i)+shum*rand(1); %зашумляем спектр первого сигнала

F2(i)=F2(i)+shum*rand(1); %зашумляем спектр второго сигнала

figure

plot(i,F1);

title('Зашумл. част. спектр ЛЧМ-сигнала')

xlabel('Номер отсчета')

Fv=F2.*Kf; % свертка спектра второго ЛЧМ-сигнала с частотной %характеристикой согласованного фильтра. Вычисление сигнала %после фильтра как ifft(Fv).

%fftshift и пр. - для наглядности результата и приведения к "правильной" амплитуде

Sv=real(fftshift(ifft((Fv)))); %Shift zero-frequency component to center of spectrum

Sv1=A0*sqrt(B)*Sv/max(Sv);% приведение к "правильной" амплитуде  

Sv2=sqrt(B)*(1/N2)*(1/A0)*real(fftshift(ifft((Fv))));

% приведение к правильной амплитуде figure

plot(Sv2);

title('Спектр ЛЧМ после согласованного фильтра')

xlabel('Номер отсчета')

pause;

close all;


 

А также другие работы, которые могут Вас заинтересовать

27395. Морфемика – изучает состав слова 96 KB
  Развитие интереса детей к языку через состав слова. Выяснение как сделаны слова в р. Вопрос о причинах ошибок которые допускают дети при разборе слова по составу специально изучали психологи Л.
27396. Методика обучения морфологии в начальных классах 69 KB
  Во II классе вводятся понятия частей речи сообщаются некоторые признаки частей речи в III и IV классах склонение имен существительных прилагательных спряжение глаголов значения форм частей речи вплоть до значений падежей временных и личных форм.; местоимения притяжательные указательные вопросительные возвратное; наречия времени места образа действия. Слова категории состояния при разборе по частям речи квалифицируются как наречия.
27397. Синтаксис – раздел грамматики 59 KB
  Одним из направлений в работе над предложением в начальных классах является формирование умения оформлять предложения в письменной речи употребление прописной буквы в начале предложения постановка знаков препинания в простых предложениях осложненных однородными членами в сложносочиненных сложноподчиненных и бессоюзных предложениях. Изучение синтаксиса способствует развитию речи так как помогает правильно строить предложения выбирать выразительные виды словосочетаний и предложений которые наиболее подходят для нужного в данной ситуации...
27398. Совершенствование речевой деятельности младших школьников 165 KB
  В начальной школе детей обучают чтению письму речи устной и письменной это есть формирование специфических речевых умений и навыков то есть видов речевой деятельности. Совершенствование речевой деятельности школьников предполагает формирование четырех обобщенных умений: а ориентироваться в ситуации общения в том числе осознавать свою коммуникативную задачу; б планировать содержание сообщения; в формулировать собственные мысли и понимать чужие; г осуществлять самоконтроль за речью восприятием ее собеседником а также за пониманием...
27399. Методика проведения изложений 46.5 KB
  Начинать обучение следует с повествовательного текста где легко прослеживается развитие действия есть ясный сюжет действующие лица. Порядок подготовительных ступеней в письменном изложении: Постановка цели выбор типа изложения выбор текста. Чтение текста: учитель 12 раза; учащиеся один раз; если текст хорошо знаком детям учитель читает 1 раз. В наши дни не рекомендуется из опасения что рассказ ребенка как бы он ни был хорош может помешать прямому влиянию на пишущих со стороны подлинного образцового текста.
27400. Методика обучения сочинениям 88.5 KB
  Сочинения устные и письменные. Школьники любят писать сочинения и рассказывать устно эта деятельность связывает учение с жизнью. Напомним что сочинения ради разностороннего развития школьников должны быть разнообразными и по источникам материала и по типам текста стилю и жанрам и по тематике по степени самостоятельности и творческого вклада по применяемым методам и приемам.
27401. Совершенствование у младших школьников культуры речевого поведения 60 KB
  Чтобы это общение протекало успешно не вызывая дискомфорта у коголибо из его участников необходимо соблюдение каждым из них определенных норм принятых в обществе норм речевого поведения. К числу вопросов связанных с культурой речевого поведения можно отнести: 1. Соблюдение правил: а поведения в аудитории в том числе на уроке в общественных местах и т.
27402. Внеклассная работа по русскому языку в начальной школе 46 KB
  Это игры утренники викторины походы и экскурсии выпуск газет и журналов радиопередачи съемка телефильмов конкурсы на лучшее сочинение или стихотворение самостоятельное внеклассное чтение книг журналов газет. Лингвистические языковые игры. Как известно игры широко используются и на уроках в более строгой системе познавательного труда детей но внеклассная внеурочная работа дает в этом отношении намного больший простор. Языковые игры обычно развлекательны но всегда содержат дидактический элемент достигающий подчас...
27403. Общая характеристика предмета «Литературное чтение», изучаемого в начальной школе 57 KB
  Назвать основные цели изучения литературного чтения в 14 класса: формирование читательских умений; литературное образование; развитие читательских интересов учащихся. Успешность изучения курса литературного чтения обеспечивает результативность обучения по другим предметам начальной школы. Курс литературного чтения призван продолжить обучение детей чтению ввести в мир художественной литературы и помочь осмыслять образность словесного искусства посредством которой художественное произведение раскрывается во всей своей полноте и...