75672

Ефективні методи програмування задач редагування і пошуку в послідовностях. Збалансовані дерева

Практическая работа

Информатика, кибернетика и программирование

Закріпити знання про динамічні структури даних. Сформувати навички обробки збалансованих дерев. Сформувати уміння застосовувати АВЛ-дерева для редагування і пошуку в послідовностях.

Украинкский

2015-01-24

180.05 KB

1 чел.

Міністерство  освіти  і  науки України

Вінницький національний технічний університет

Інститут інформаційних технологій та комп’ютерної інженерії

Кафедра ПЗ

Практична робота №8 варіант №9

з дисципліни Алгоритми та структури даних

Виконала: ст. гр. 1 ПІ-13б                            Лілик Л. С.

Перевірив:                                                       Власюк В. Х.

Вінниця, 2013


Тема: Ефективні методи програмування задач редагування і пошуку в послідовностях. Збалансовані дерева.

Мета:  Закріпити знання про динамічні структури даних. Сформувати навички обробки збалансованих дерев. Сформувати уміння застосовувати АВЛ-дерева для редагування і пошуку в послідовностях.

Завдання:

Варіант № 9.

  1.  Реалізувати описану схему збереження множин у виді збалансованого дерева, переконавшись, що вона також дозволяє обійтися C*log(n) діями для операцій включення, виключення і перевірки приналежності.

Опис алгоритму виконання

На початку програми дерева не існує (множина порожня). Користувач за допомогою клавіші Insert додає нові вузли. При цьому вони додаються рівномірно по рівнях (відбувається балансування дерева).  Вузол додається, дерево перевіряється на збалансованість. Якщо не збалансоване, то відбувається поворот дерева у протилежну дисбалансу сторону.

Складність алгоритму

Складність алгоритму дорівнює О(C*log(N)) від t,

де tчас виконання,

Nкількість вузлів дерева (елементів множини),

С – константа.


Блок-схема алгоритму


Лістинг фрагментів програми

//-----------------------------------------------------------------------------

#pragma once

class Node;

class Tree

{

public:

int num; int topY;

int leftX;

int rightX;

Node children;

Tree* parent;

Tree(int num=0);

Tree(Tree& tr);

~Tree(void);

void ShowTree(HDC hdc, int topY, int leftX, int rightX);

void Add(Tree * tr);

void addChild(Tree * tr);

void setParent(Tree * tr);

Tree* removeChild(int k);

void deleteChild(int k);

void deleteChild(Tree *tr);

int heightCount();

int Balance();

void balanceTree();

void Delete(int n);

bool insideCheck(int n);

};

class Node

{

private:

public:

Tree **arr;

int amount;

Node();

~Node();

void Push(Tree *el);

Tree* Pop(int n);

Tree* operator[](int n);

};

extern Tree *way;

//-----------------------------------------------------------------------------

#include "stdafx.h"

#include "Tree.h"

Tree *way=0;

Tree* Node::operator[](int n) {return arr[n];}

Tree::Tree(int num)

{

num=num;

parent=0;

}

Tree::Tree(Tree& tr)

{

num=tr.num;

children.arr[0]=tr.children[0];

children.arr[1]=tr.children[1];

}

Tree::~Tree(void)

{

}

void Tree::setParent(Tree * tr)

{

parent=tr;

}

void Tree::addChild(Tree * tr)

{

children.Push(tr);

tr->setParent(this);

}

Tree* Tree::removeChild(int k)

{

return children.Pop(k);

}

void Tree::deleteChild(int k)

{

delete children.Pop(k);

}

void Tree::deleteChild(Tree *tr)

{

for(int i=0;i<children.amount;++i)

{

 if(children[i]==tr)

 {

  delete children.Pop(i);

  return;

 }

}

}

const int spaceStep=40;

void Tree::ShowTree(HDC hdc,int top, int left, int right)

{

HPEN hNodePen, hrightPen, holdpen;

HBRUSH hNodeBrush, holdbrush;

hNodePen = CreatePen(PS_SOLID, 3, RGB(255, 128, 0));

hrightPen = CreatePen(PS_SOLID, 3, RGB(7, 100, 255));

holdpen = (HPEN)SelectObject(hdc, hNodePen);

 

hNodeBrush = CreateSolidBrush(RGB(255, 128, 0));

holdbrush = (HBRUSH)SelectObject(hdc, hNodeBrush);

if (this==0) return;

topY=top;

leftX=left;

rightX=right;

int x=left+(right-left)/2;

int y=top+spaceStep/2;

for(int i=0;i<children.amount;++i)

{

 if(children[i]!=0)

 {

  

  holdpen = (HPEN)SelectObject(hdc, hrightPen);

  POINT pnt;

  ::MoveToEx(hdc, x, y, &pnt);

  int x=left+(right-left)/children.amount*i+((right-(right-left)/children.amount*(children.amount-i-1))-(left+(right-left)/children.amount*i))/2;

  int y=top+spaceStep+spaceStep/2;

  ::LineTo(hdc, x, y);

 }

}

holdpen = (HPEN)SelectObject(hdc, hNodePen);

Ellipse(hdc, x-20, y-20, x+20, y+20);

char buf[50];

_itoa(num,buf,10);

::TextOutA(hdc, x-5, y-8, (LPCSTR) buf, strlen(buf) );

 

for(int i=0;i<children.amount;++i)

{

 if(children[i]!=0)

 {

  children[i]->ShowTree(hdc,top+spaceStep,left+(right-left)/children.amount*i,right-(right-left)/children.amount*(children.amount-i-1));

  

 }

}

::DeleteObject(hNodePen);

::DeleteObject(hrightPen);

::DeleteObject(hNodeBrush);

}

Node::Node()

{

amount=2;

arr=new Tree*[amount];

for(int i=0;i<amount;++i)arr[i]=0;

}

Node::~Node()

{

 

}

void Node::Push(Tree *el)

{

Tree ** tmp=new Tree*[amount+1];

for(int i=0;i<amount;++i)

{

 tmp[i]=arr[i];

}

tmp[amount]=el;

++amount;

delete [] arr;

arr=tmp;

}

Tree* Node::Pop(int n)

{

Tree ** tmp=new Tree *[amount-1];

int k=0;

Tree* temp;

for(int i=0;i<amount;++i)

{

 if(i!=n)

 {

  tmp[k]=arr[i];

  ++k;

 }

}

temp=arr[n];

delete [] arr;

arr=tmp;

--amount;

return temp;

}

int Tree::heightCount()

{

if(this==0)return 0;

return max(children[0]->heightCount(),children[1]->heightCount())+1;

}

int Tree::Balance()

{

return children[0]->heightCount()-children[1]->heightCount();

}

enum Rot

{

left=0,

right

};

void Rotate(Tree * parent,Rot direction)

{

if(direction==left)

{

 Tree *tmp=new Tree(*parent);

 parent->children.arr[0]=tmp;

 tmp->children.arr[1]=parent->children[1]->children[0];

 parent->num=parent->children[1]->num;

 tmp=parent->children.arr[1];

 parent->children.arr[1]=parent->children[1]->children[1];

 delete tmp;

 return;

}

 

if(direction==right)

{

 Tree *tmp=new Tree(*parent);

 parent->children.arr[1]=tmp;

 tmp->children.arr[0]=parent->children[0]->children[1];

 parent->num=parent->children[0]->num;

 tmp=parent->children.arr[0];

 parent->children.arr[0]=parent->children[0]->children[0];

 delete tmp;

 return;

}

}

void Tree::balanceTree()

{

while(Balance()<-1)Rotate(this,left);

while(Balance()>1)Rotate(this,right);

}

void Tree::Add(Tree * tr)

{

if(tr->num<this->num&&Balance()>0)

{

 Rotate(this,right);

}

else

{

 if(tr->num>this->num&&Balance()<0)

 {

  Rotate(this,left);

 }

}

if(tr->num<this->num)

{

 if(children[0]==0)children.arr[0]=tr;

 else

  children[0]->Add(tr);

 return;

}

if(tr->num>this->num)

{

 if(children[1]==0)children.arr[1]=tr;

 else

  children[1]->Add(tr);

 return;

}

 

}

void Tree::Delete(int n)

{

if(children[0]!=0&&children[0]->num==n)

{

 Tree*tmp=children[0];

 if(children[0]->children[0]!=0)

 {

  children.arr[0]=children[0]->children[0];

  if(tmp->children[1]!=0)children[0]->Add(tmp->children[1]);

 }

 else

 {

  children.arr[0]=children[0]->children[1];

  if(children[0]!=0&&tmp->children[0]!=0)children[0]->Add(tmp->children[0]);

 }

 balanceTree();

 return;

}

if(children[1]!=0&&children[1]->num==n)

{

 Tree*tmp=children[1];

 if(children[1]->children[0]!=0)

 {

  children.arr[1]=children[1]->children[0];

  if(tmp->children[1]!=0)children[1]->Add(tmp->children[1]);

 }

 else

 {

  children.arr[1]=children[1]->children[1];

  if(children[1]!=0&&tmp->children[0]!=0)children[1]->Add(tmp->children[0]);

 }

 balanceTree();

 return;

}

for(int i=0;i<children.amount;++i)if(children[i]!=0)children[i]->Delete(n);

}

bool Tree::insideCheck(int n)

{

if(this==0)return false;

if(num==n)return true;

if(children[0]->insideCheck(n))return true;

if(children[1]->insideCheck(n))return true;

return false;

}


Результат виконання

Висновки

Закріпили знання про динамічні структури даних. Сформували навички обробки збалансованих дерев. Сформували уміння застосовувати АВЛ-дерева для редагування і пошуку в послідовностях. У ході виконання практично роботи створено алгоритм балансування дерева для зберігання підмножин.


 

А также другие работы, которые могут Вас заинтересовать

27862. Совместное действие устройств АПВ и токовой защиты. Расчет тока срабатывания поперечной дифференциальной токовой направленной защиты 156.5 KB
  Совместное действие устройств АПВ и токовой защиты. Совместное действие защиты и устройств АПВ Согласованное действие АПВ с действием РЗ можно повысить эффективность устройств автоматики расширить защитные зоны простых токовых быстродействующих защит. При этом допускается не селективная работа защиты с последующим исправлением в результате действия устройств АПВ. При замыкании в точке сети Iотс выключает Q1 →АПВ→ включает его обратно.