76142

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

Лабораторная работа

Физика

Если известен момент инерции тела относительно оси проходящей через центр масс то момент инерции тела относительно любой параллельной оси можно определить воспользовавшись теоремой Штейнера согласно которой момент инерции...

Русский

2015-01-29

493.5 KB

2 чел.

Содержание

  1.  Цель работы……………………………………………………………4
  2.  Теоретическая часть…………………………………………………..4

2.1. Момент инерции. Теорема Штейнера……………………………...4

2.2. Метод крутильных колебаний……………………………………...6

  1.  Приборы и принадлежности………………………………………….8
  2.  Требования по технике безопасности………………………………..8
  3.  Порядок выполнения работы…………………………………………8
  4.  Требования к отчету…………………………………………………10
  5.  Контрольные вопросы……………………………………………….10

Список литературы……………………………………………………..11

ЛАБОРАТОРНАЯ РАБОТА № 4

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ

МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

1. Цель работы

Исследование крутильных колебаний и измерение момента инерции тела сложной формы.

2. Теоретическая часть

2.1. Момент инерции. Теорема Штейнера

Моментом инерции материальной точки относительно оси называют величину

,

где mi – масса материальной точки, ri – расстояние от материальной точки до оси.

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, составляющих его

.

Представляя тело состоящим из малых частей объемом dV и массы dm, его момент инерции можно рассчитать интегрированием

                                            ,                          (2.1)

где ρплотность.

Рассчитаем, например, момент инерции тонкого однородного стержня массы m и длины l относительно оси перпендикулярной стержню и проходящей через его середину (рис. 2.1).

 

                    

равен                                .                           (2.2)

Из (2.1) следует, что момент инерции однородного стержня не зависит от его ширины, поэтому формула (2.2) применима для расчета момента инерции тонкой однородной пластины прямоугольной формы.

Если известен момент инерции тела относительно оси, проходящей через центр масс, то момент инерции тела относительно любой параллельной оси можно определить, воспользовавшись теоремой Штейнера, согласно которой момент инерции J тела относительно произвольной оси равен сумме момента инерции Jс тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями

                                                .                                     (2.3)

Используя уравнение (2.2), теорему Штейнера и уравнение (2.1) рассчитаем момент инерции параллелепипеда относительно оси симметрии.

                           Рис. 2.2

.

Момент инерции параллелепипеда относительно оси 0Z

              ,                 (2.4)

где а и b – длины сторон параллелепипеда, расположенные в горизонтальной плоскости, m – масса параллелепипеда.

Момента инерции тела относительно оси является мерой инертности тела при вращательном движении и зависит не только от массы тела, но и от распределения ее в пространстве относительно оси. Тело обладает определенным моментом инерции относительно любой оси независимо от того вращается оно или покоится.

2.2 Метод крутильных колебаний

В настоящей работе моменты инерции твердых тел определяется с помощью крутильных колебаний на установке, представленной на рис. 2.3.

Рис. 2.3

Рамка 1 закреплена на натянутой стальной проволоке, проходящей по ее геометрической оси. Если рамку повернуть на некоторый угол φ, то происходит закручивание проволоки. Тогда силы упругости стремятся вернуть рамку в исходное положение. Момент М возвращающей силы при относительно малом угле поворота φ связан с ним соотношением

                                                    ,                                         (2.5)

где D – коэффициент, называемый модулем кручения проволоки.

Величина D зависит от длины проволоки, ее диаметра и модуля сдвига, характеризующего упругие свойства материала проволоки.

Согласно основного закона динамики вращательного движения, момент силы М, угловое ускорение ε и момент инерции J тела связаны соотношением

                                                   .                                            (2.6)

Из (2.5) и (2.6) получаем дифференциальное уравнение, описывающее движение рамки

или

                                             ,                                        (2.7)

где .

Решением уравнения (2.7) является гармоническое колебание

с периодом

                                               .                                           (2.8)

Момент инерции J можно найти на основе соотношения (2.8), если узнать величину D. В данной работе определение модуля кручения D не требуется. Измеряется период колебания Т пустой рамки с моментом инерции J, Затем определяется период Т1 колебаний системы, состоящий из рамки с установленными на нее грузами 2 с известным моментом инерции J0. Тогда, согласно формуле (2.8), имеем

                                           .                                     (2.9)

Исключая из (2.8) и (2.9) величину D, получаем формулу для расчета момента инерции J исследуемого тела

                                         .                                     (2.10)

3. Приборы и принадлежности

экспериментальная установка;

набор тел (два сплошных цилиндра, параллелепипед, куб).

4. Требования по технике безопасности

4.1. Прежде чем приступить к работе, внимательно ознакомьтесь с заданием и лабораторной установкой.

4.2. По окончании работы приведите в порядок свое рабочее место. Обесточьте прибор.

5. Порядок выполнения работы

1. Установить рамку так, чтобы в положении равновесия флажок рамки находился между окнами фотодатчика 3 рис. 2.2. Установить электромагнит в положение, чтобы угловая амплитуда колебаний рамки составляла 5–10 градусов. Включить электропитание нажатием кнопки «СЕТЬ». Затем повернуть рамку так, чтобы она удерживалась в исходном положении электромагнитом.

2. Измерить длительность времени t для числа полных колебаний рамки N=20. Для этого нажать кнопку «ПУСК». Кнопку «СТОП» нажать, когда число полных колебаний будет равно N – 1.

3. Повторить опыт еще два раза. Рассчитать среднее время tср и определить средний период колебаний Т рамки

                                                 .                                              (5.1)

4. Установить два груза (цилиндра) на планку. Три раза определить время t1 20 полных колебаний рамки. По среднему времени определить период колебаний Т1 рамки с грузами.

5. Определить момент инерции рамки Jр по формуле (2.10), где J0 = 2 m (), (m – масса груза; r=0,015 м – радиус груза;     l=0,052 м – расстояние от оси вращения рамки до оси грузов).

Результаты измерений занести в таблицу 1.

6. Снять грузы, установить исследуемый образец 4 (по указанию преподавателя) в рамке и закрепить специальными винтами так, чтобы острия винтов входили в углубления на образце вдоль       какой – либо из осей ОХ, Оy, ОZ,  АС /, ЕК, LM  рис. 5.1.

7. Повторив п.2 и п.3 определить время t2 20 колебаний рамки с образцом и по среднему времени рассчитать период Т2.

8. Определить  момент  инерции исследуемого образца по формуле

                                .                                        (5.2)

9. Выполнить п. 6 – 8 для всех указанных осей. Результаты занести в таблицу 2.

10. Сравнить  результаты  определения  моментов  инерции образца относительно различных осей.

11. Рассчитать относительную и абсолютную погрешности измерения момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя).

12. Рассчитать теоретическое значение момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя) по формуле (2.4)

13. Сравнить результаты экспериментального определения момента инерции образца с теоретически рассчитанным.

Таблица 1

№ опыта

t, с

tср

T, с

t1, с

t1 ср, с

T1, с

Jр, кг·м2

1

2

3

Таблица 2

№ опыта

t2, с

t2 ср

T2, с

J, кг·м2

ΔJ, кг·м2

ε, %

1

2

3

  1.  Требования к отчету

Отчет по лабораторной работе должен содержать:

а) номер и название лабораторной работы;

б) основные формулы для выполнения расчетов;

в) результаты измерений и вычислений;

г) формулы для расчета погрешностей;

д) выводы.

7. Контрольные вопросы

  1.  Что называется моментом  инерции  материальной  точки  относительно оси? Что называется моментом  инерции  тела относительно оси?
  2.  Каков физический смысл момента инерции?

3.  В чем суть теоремы Штейнера?

4. Запишите основной закон динамики вращательного движения и раскройте физический смысл величин, входящих в него.

5. Покажите, что система совершает гармонические колебания, запишите дифференциальное уравнение колебаний и его решение.

6. Выведите формулу для расчета момента инерции однородного параллелепипеда относительно оси симметрии.

Список литературы

  1.  Савельев И.В. Курс общей физики. Кн. 1. – М.: Наука, 1998.– 336 с.

2. Детлаф А.Н., Яворский Б.М.  Курс физики. – М.: Высшая школа, 2000. – 718 с.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 1994.– 542 с.

PAGE  10


 

А также другие работы, которые могут Вас заинтересовать

54681. Будова та функції органів дихання 362 KB
  Цілі: сформувати в учнів поняття про дихання як процес необхідний для життя; устоновити взаемозвязок будови і функції органів дихання; зясувати як змінюеться повітря в дихальних шляхах; обгронтувати необхідність дихання носом; продовжувати формувати науковий світогляд на основі знань про еволюцію дихальної системи; розвивати вміння порівнювати аналізувати загальнувати;вдосконалювати вміння а навички роботи з текстом підручникамалюнками. Обладнання: таблиці Органи дихання таблиці з...
54682. Орієнтація на вулиці 44.5 KB
  So, you know a lot about London! But what is the difference in Road Safety in this country and what we must know to cross the street there? Right! You should first look right when you cross the street in London.
54683. Мій край – моя історія. Оріхів -місто серця мого 61.5 KB
  Нас зацікавила історія нашого міста району яким воно було у давнину коли одержало статус міста хто був першим головою міста На всі ці питання можна одержати відповідь із книжок Оріхів. Статус міста Оріхів одержав у 1801 році 19 лютого і став центром Мелітопольського повіту Таврійської губернії. В розпорядження міста була віддана земля 2602 десятини.
54685. Монополизм: сущность, формы, последствия. Естественная монополия 22.63 KB
  Рынок, где доминирует монополия, находится в резком контрасте со свободным рынком, на котором конкурирующие продавцы предлагают для продажи стандартизированный товар. Доступ других фирм на монополизированный рынок затруднен или невозможен, так как существуют барьеры, не позволяющие конкурентам войти в отрасль.
54686. Oберегu моєї оселі 123 KB
  Мета: Пропаганда літератури із народознавства, історії нашого народу, його мови, звичаїв, пробудити цікавість до народної символіки, прикмет, до невмирущих скарбів народу.
54687. Мереживо осінніх барв 252 KB
  Багату палітру кольорів дарує нам осінь коли природа одягається у розкішне вбрання. Яке розмаїття фарб Осінь міняє зелене вбрання на червоне золоте. Після спекотного літа після серпневих теплих днів настала золота осінь. Листя жовкне денеде: Панна осінь в гості йде.
54688. До нас у гості завітала Осінь 85 KB
  У святковій радісній атмосфері розширити збагатити та узагальнити знання дітей про пору року осінь викликати у дітей позитивні емоції від виконання пісень віршів осінньої тематики; розвивати увагу спостережливість музикальність артистизм; виховувати естетичні смаки дружні стосунки між дітьми любов до рідної природи бажання оберігати її. Дійові особи: Ведучі Осінь осінні Місяці Овочі Білочки Зайчики Лисичка Їжачок Жабка Ведмедик діти. Діти: Осінь.
54689. Свято Осені 45.5 KB
  Осінь – це пора, яку часто звуть чудовою, замріяною, золотою. Вона особливо м’яка, ніжна, як гарна мелодія. Слухаєш, спостерігаєш природу в перші осінні дні й відчуваєш всю її урочисту красу. У ній поєдналися чарівність барв теплого літечка з першими подихами наступних холодів зими.