76142

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

Лабораторная работа

Физика

Если известен момент инерции тела относительно оси проходящей через центр масс то момент инерции тела относительно любой параллельной оси можно определить воспользовавшись теоремой Штейнера согласно которой момент инерции...

Русский

2015-01-29

493.5 KB

2 чел.

Содержание

  1.  Цель работы……………………………………………………………4
  2.  Теоретическая часть…………………………………………………..4

2.1. Момент инерции. Теорема Штейнера……………………………...4

2.2. Метод крутильных колебаний……………………………………...6

  1.  Приборы и принадлежности………………………………………….8
  2.  Требования по технике безопасности………………………………..8
  3.  Порядок выполнения работы…………………………………………8
  4.  Требования к отчету…………………………………………………10
  5.  Контрольные вопросы……………………………………………….10

Список литературы……………………………………………………..11

ЛАБОРАТОРНАЯ РАБОТА № 4

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ

МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

1. Цель работы

Исследование крутильных колебаний и измерение момента инерции тела сложной формы.

2. Теоретическая часть

2.1. Момент инерции. Теорема Штейнера

Моментом инерции материальной точки относительно оси называют величину

,

где mi – масса материальной точки, ri – расстояние от материальной точки до оси.

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, составляющих его

.

Представляя тело состоящим из малых частей объемом dV и массы dm, его момент инерции можно рассчитать интегрированием

                                            ,                          (2.1)

где ρплотность.

Рассчитаем, например, момент инерции тонкого однородного стержня массы m и длины l относительно оси перпендикулярной стержню и проходящей через его середину (рис. 2.1).

 

                    

равен                                .                           (2.2)

Из (2.1) следует, что момент инерции однородного стержня не зависит от его ширины, поэтому формула (2.2) применима для расчета момента инерции тонкой однородной пластины прямоугольной формы.

Если известен момент инерции тела относительно оси, проходящей через центр масс, то момент инерции тела относительно любой параллельной оси можно определить, воспользовавшись теоремой Штейнера, согласно которой момент инерции J тела относительно произвольной оси равен сумме момента инерции Jс тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями

                                                .                                     (2.3)

Используя уравнение (2.2), теорему Штейнера и уравнение (2.1) рассчитаем момент инерции параллелепипеда относительно оси симметрии.

                           Рис. 2.2

.

Момент инерции параллелепипеда относительно оси 0Z

              ,                 (2.4)

где а и b – длины сторон параллелепипеда, расположенные в горизонтальной плоскости, m – масса параллелепипеда.

Момента инерции тела относительно оси является мерой инертности тела при вращательном движении и зависит не только от массы тела, но и от распределения ее в пространстве относительно оси. Тело обладает определенным моментом инерции относительно любой оси независимо от того вращается оно или покоится.

2.2 Метод крутильных колебаний

В настоящей работе моменты инерции твердых тел определяется с помощью крутильных колебаний на установке, представленной на рис. 2.3.

Рис. 2.3

Рамка 1 закреплена на натянутой стальной проволоке, проходящей по ее геометрической оси. Если рамку повернуть на некоторый угол φ, то происходит закручивание проволоки. Тогда силы упругости стремятся вернуть рамку в исходное положение. Момент М возвращающей силы при относительно малом угле поворота φ связан с ним соотношением

                                                    ,                                         (2.5)

где D – коэффициент, называемый модулем кручения проволоки.

Величина D зависит от длины проволоки, ее диаметра и модуля сдвига, характеризующего упругие свойства материала проволоки.

Согласно основного закона динамики вращательного движения, момент силы М, угловое ускорение ε и момент инерции J тела связаны соотношением

                                                   .                                            (2.6)

Из (2.5) и (2.6) получаем дифференциальное уравнение, описывающее движение рамки

или

                                             ,                                        (2.7)

где .

Решением уравнения (2.7) является гармоническое колебание

с периодом

                                               .                                           (2.8)

Момент инерции J можно найти на основе соотношения (2.8), если узнать величину D. В данной работе определение модуля кручения D не требуется. Измеряется период колебания Т пустой рамки с моментом инерции J, Затем определяется период Т1 колебаний системы, состоящий из рамки с установленными на нее грузами 2 с известным моментом инерции J0. Тогда, согласно формуле (2.8), имеем

                                           .                                     (2.9)

Исключая из (2.8) и (2.9) величину D, получаем формулу для расчета момента инерции J исследуемого тела

                                         .                                     (2.10)

3. Приборы и принадлежности

экспериментальная установка;

набор тел (два сплошных цилиндра, параллелепипед, куб).

4. Требования по технике безопасности

4.1. Прежде чем приступить к работе, внимательно ознакомьтесь с заданием и лабораторной установкой.

4.2. По окончании работы приведите в порядок свое рабочее место. Обесточьте прибор.

5. Порядок выполнения работы

1. Установить рамку так, чтобы в положении равновесия флажок рамки находился между окнами фотодатчика 3 рис. 2.2. Установить электромагнит в положение, чтобы угловая амплитуда колебаний рамки составляла 5–10 градусов. Включить электропитание нажатием кнопки «СЕТЬ». Затем повернуть рамку так, чтобы она удерживалась в исходном положении электромагнитом.

2. Измерить длительность времени t для числа полных колебаний рамки N=20. Для этого нажать кнопку «ПУСК». Кнопку «СТОП» нажать, когда число полных колебаний будет равно N – 1.

3. Повторить опыт еще два раза. Рассчитать среднее время tср и определить средний период колебаний Т рамки

                                                 .                                              (5.1)

4. Установить два груза (цилиндра) на планку. Три раза определить время t1 20 полных колебаний рамки. По среднему времени определить период колебаний Т1 рамки с грузами.

5. Определить момент инерции рамки Jр по формуле (2.10), где J0 = 2 m (), (m – масса груза; r=0,015 м – радиус груза;     l=0,052 м – расстояние от оси вращения рамки до оси грузов).

Результаты измерений занести в таблицу 1.

6. Снять грузы, установить исследуемый образец 4 (по указанию преподавателя) в рамке и закрепить специальными винтами так, чтобы острия винтов входили в углубления на образце вдоль       какой – либо из осей ОХ, Оy, ОZ,  АС /, ЕК, LM  рис. 5.1.

7. Повторив п.2 и п.3 определить время t2 20 колебаний рамки с образцом и по среднему времени рассчитать период Т2.

8. Определить  момент  инерции исследуемого образца по формуле

                                .                                        (5.2)

9. Выполнить п. 6 – 8 для всех указанных осей. Результаты занести в таблицу 2.

10. Сравнить  результаты  определения  моментов  инерции образца относительно различных осей.

11. Рассчитать относительную и абсолютную погрешности измерения момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя).

12. Рассчитать теоретическое значение момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя) по формуле (2.4)

13. Сравнить результаты экспериментального определения момента инерции образца с теоретически рассчитанным.

Таблица 1

№ опыта

t, с

tср

T, с

t1, с

t1 ср, с

T1, с

Jр, кг·м2

1

2

3

Таблица 2

№ опыта

t2, с

t2 ср

T2, с

J, кг·м2

ΔJ, кг·м2

ε, %

1

2

3

  1.  Требования к отчету

Отчет по лабораторной работе должен содержать:

а) номер и название лабораторной работы;

б) основные формулы для выполнения расчетов;

в) результаты измерений и вычислений;

г) формулы для расчета погрешностей;

д) выводы.

7. Контрольные вопросы

  1.  Что называется моментом  инерции  материальной  точки  относительно оси? Что называется моментом  инерции  тела относительно оси?
  2.  Каков физический смысл момента инерции?

3.  В чем суть теоремы Штейнера?

4. Запишите основной закон динамики вращательного движения и раскройте физический смысл величин, входящих в него.

5. Покажите, что система совершает гармонические колебания, запишите дифференциальное уравнение колебаний и его решение.

6. Выведите формулу для расчета момента инерции однородного параллелепипеда относительно оси симметрии.

Список литературы

  1.  Савельев И.В. Курс общей физики. Кн. 1. – М.: Наука, 1998.– 336 с.

2. Детлаф А.Н., Яворский Б.М.  Курс физики. – М.: Высшая школа, 2000. – 718 с.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 1994.– 542 с.

PAGE  10


 

А также другие работы, которые могут Вас заинтересовать

79002. Теоретический уровень науки. Генезис научной теории, её внутренняя организация. Математический аппарат и его интерпретация 58.5 KB
  Генезис научной теории её внутренняя организация. Выделяют следующие основные элементы структуры теории: 1 Исходные основания фундаментальные понятия принципы законы уравнения аксиомы и т. 3 Логика теории совокупность определенных правил и способов доказательства нацеленных на прояснение структуры и изменения знания. 5 Совокупность законов и утверждений выведенных в качестве следствий из основоположений данной теории в соответствии с конкретными принципами.
79004. Неклассическая модель научного знания. Философский и общенаучный смысл теории относительности. Парадоксы неклассической науки 36.5 KB
  Философский и общенаучный смысл теории относительности. Эти события привели к кризису ньютоновской парадигмы классической физической теории господствовавшей в XVII первой половине XIX в. Кризис разрешился революцией в физике породившей: теорию относительности частную или специальную – СТО и общую ОТО; квантовую механику нерелятивистскую и релятивистскую квантовую теорию поля; Эти теории ознаменовали переход от классической к неклассической науке. Создание теории относительности.
79005. Постнеклассическая наука, её ценностно-целевые ориентиры. Парадигма нелинейного мира 35.5 KB
  Парадигма нелинейного мира. В контексте различных и даже противоречивых концепций можно говорить о новой научной картине мира создаваемой постнеклассической наукой Процесс ее построения еще не завершен но основные контуры уже очевидны. Исходные философские идеи новой науки: единство мира заключается в том что на всех уровнях организации действуют общие законы; системное видение в противовес механическому пониманию мира; синтез детерминизма многовариантности и случайности; отказ от концепции редукционизма: нахождение изоморфных законов в...
79007. Особенности научного знания. Наука и другие формы миропостижения (философия, искусство, религия) 48.5 KB
  Ответ на вопрос о том что исследуется раскрывает природу предмета науки а ответ на вопрос о том как осуществляется исследование раскрывает метод исследования. Философия же в отличие от науки выносит универсальные суждения и стремится открыть законы всего мирового целого. В отличие от науки ценностная компонента знания неустранима из философии. Это с одной стороны натурфилософия как попытка строить универсальные картины мира без опоры на данные науки а с другой позитивизм призывающий философию отказаться от обсуждения...
79008. Роль науки в образовании и формировании современного человека 30.5 KB
  Роль науки в образовании распространяется на все компоненты образовательного процесса цели средства результаты принципы формы и методы. Образовательный процесс выступает в качестве исходной территории на которой происходит встреча индивида и науки а также его подготовка к жизнедеятельности в данном обществе формирование зрелой личности. В этой связи достаточно часты обращения к античной идее пайдейя обозначающей процесс формирования индивида включающий в себя три составляющие: воспитанность образованность и культура....
79009. Структура эмпирического и теоретического знания 47 KB
  Теоретический уровень научного познания как и эмпирический имеет ряд подуровней среди которых можно выделить следующие по степени общности: а аксиомы теоретические законы; б частные теоретические законы описывающие структуру свойства и поведение идеализированных объектов; в частные единичные высказывания утверждающие нечто о конкретных во времени и пространстве состояниях свойствах и отношениях некоторых идеализированных объектов Абстрагирование и идеализация – начало теоретического познания. Научные законы – регулярные...
79010. Эксперимент и наблюдение 38.5 KB
  Наблюдение и эксперимент в научном познании виды эксперимента. Существуют три основных метода опосредственного получения нового знания – операциональный экспериментальный и логикоматематический. Эмпирическая процедура может выступать как средство выявления точного и однозначного физического смысла тех или иных ключевых понятий для чего в их определения должен входить метод позволяющий в каждом конкретном случае на основе эксперимента решить правильно ли применение этого понятия в данной познавательной ситуации или нет. При...