76230

Спектр плотности мощности и его связь с функцией корреляции

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например...

Русский

2015-01-30

94.43 KB

11 чел.

Международная образовательная корпорация

Факультет Прикладных Наук

Реферат

на тему «Спектр плотности мощности и его связь с функцией корреляции»

По дисциплине «Теория электрической связи»

Выполнила: студент группы

ФПН-РЭиТ(з)-4С* 

Джумагельдин  Д

Проверила: Глухова Н.В 

Алматы, 2015

Содержание

І Введение

ІІ Основная часть

  1.  Спектральная плотность мощности
  2.  Случайные величины
  3.  Плотность вероятности функции от случайной величины
  4.  Случайный процесс
  5.  Метод  определения  спектральной  плотности мощности по корреляционной функции

ІІІ Заключение

ІV Список использованной литературы

Введение

Теория вероятностей рассматривает случайные величины и их характеристики в "статике". Задачи описания и изучения случайных сигналов "в динамике", как отображения случайных явлений, развивающихся во времени или по любой другой переменной, решает теория случайных процессов.

 Спектральная плотность мощности позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность при различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.

В качестве универсальной координаты для распределения случайных величин по независимой переменной будем использовать, как правило, переменную "t" и трактовать ее, чисто для удобства, как временную координату. Распределения случайных величин во времени, а равно и сигналов их отображающих в любой математической форме, обычно называют случайными процессами. В технической литературе термины "случайный сигнал" и "случайный процесс" используются как синонимы.

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например, акты регистрации частиц ионизирующих излучения при распаде радионуклидов. Во вторых, информационные сигналы, зависимые от определенных параметров физических процессов или объектов, значения которых заранее неизвестны, и которые обычно подлежать определению по данным информационным сигналам. И в третьих, это шумы и помехи, хаотически изменяющиеся во времени, которые сопутствуют информационным сигналам, но, как правило, статистически независимы от них как по своим значениям, так и по изменениям во времени.

Спектральная плотность мощности

Спектральная плотность мощности позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность при различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.

Картину распределения средней мощности по частотам называют спектром мощности. Прибор, при помощи которого измеряется спектр мощности, называется анализатором спектра. Найденный в результате измерений спектр называется аппаратным спектром.

Работа анализатора спектра основана на следующих методах измерений:

методе фильтрации;

методе преобразования по теореме Винера-Хинчена;

методе Фурье-преобразования;

методе с использованием знаковых функций;

методе аппаратного применения ортогональных функций.

Особенность измерения спектра мощности состоит в значительной продолжительности эксперимента. Нередко она превышает длительность существования реализации, или время, в течение которого сохраняется стационарность исследуемого процесса. Оценки спектра мощности, получаемые по одной реализации стационарного эргодического процесса, не всегда приемлемы. Часто приходится выполнять многочисленные измерения, так как необходимо усреднение реализаций как по времени, так и по ансамблю. Во многих случаях реализации исследуемых случайных процессов предварительно запоминают, что позволяет многократно повторять эксперимент с изменением  продолжительности анализа, использованием различных алгоритмов обработки и аппаратуры.

В случае предварительной записи реализаций случайного процесса аппаратурные погрешности могут быть уменьшены до значений, обусловленных конечной длительностью реализации и нестационарностью.

Запоминание анализируемых реализаций позволяет ускорить аппаратурный анализ и автоматизировать его.

Случайные величины

     Случайная величина описывается вероятностными законами. Вероятность того, что непрерывная величина х при измерении попадет в какой-либо интервал х1 <х <х2, определяется выражением:

, где p(x) - плотность вероятности, причем . Для дискретной случайной величины хi P(x = xi)=Pi, где Pi - вероятность, соответствующая i-у уровню величины х. 

     Моменты случайной величины:

а) среднее значение (математическое ожидание)

б) средний квадрат

в) средний квадрат флуктуаций (дисперсия)

     Вид функции р(х) плотности вероятности для различных случайных величин может быть различен. Часто выполняется нормальный закон распределения вероятности: ,

где  - среднее значение,  - дисперсия.

     Имеет место «центральная предельная теорема»: распределение вероятности для суммы независимых случайных величин с ростом числа слагаемых, при которых нет доминирующих, стремится к нормальному закону независимо от законов распределения слагаемых.

     Плотность вероятности функции от случайной величины

Пусть y - случайная величина, связанная с x однозначной функциональной зависимостью вида у = f(x). Попадание случайной точки х в интервал шириной dx и попадание случайной точки у в отвечающий ему интервал шириной  являются эквивалентными событиями, поэтому вероятности их совпадают:

. Отсюда .

     Если функциональная связь между х и у неоднозначна, так что имеется несколько значений  для одного значения у (х=g(у) - функция, обратная по отношению к у=f(х)), то выражение для плотности вероятности ру(у) обобщается:

.

     Многомерная плотность вероятности

Пусть имеем n случайных величин х12, …, хn. Можно ввести n-мерную плотность вероятности p12, …, хn), определяющую вероятность одновременного осуществления событий , , ..., ,

причем . Зная n-мерную плотность вероятности, всегда можно найти m-мерную (m < n) плотность вероятности меньшего порядка, интегрируя по лишним координатам:

.

Располагая многомерной плотностью вероятности, можно находить среднее значение любых комбинаций этих случайных величин и определять их моменты. В частности, для двумерной случайной величины будем иметь:

  

Новым по сравнению с одномерным случаем является смешанный момент второго порядка - ковариационный момент

 

или центрированный корреляционный момент

Вводят также безразмерный коэффициент корреляции

Для статистически независимых случайных величин

Статистически независимые случайные величины некоррелированы между собой:

 при . Обратное утверждение в общем случае неверно: из некоррелированности не вытекает автоматически статистическая независимость случайных величин.

Случайный процесс

     Под случайным процессом понимают множество (ансамбль) случайных функций хк(t), называемых возможными реализациями этого случайного процесса. В каждый выбранный момент времени t1 конкретная реализация есть случайная величина с плотностью вероятности  и ее среднее значение определяется усреднением по всем возможным реализациям:

     Различают стационарные и нестационарные случайные процессы. Для стационарных процессов плотность вероятности от времени не зависит: . Стационарный процесс называется эргодическим, если усреднение по множеству реализаций эквивалентно усреднению по времени в пределах одной реализации.

       

     Кроме одномерной плотности вероятности  вводят двумерную плотность вероятности совместной реализации двух значений: х1 в момент времени t1  и х2 в момент времени t2.

.

Для стационарных процессов двумерная плотность вероятности зависит только от разности моментов времени   

     Двумерная плотность вероятности определяет дополнительный момент - автокорреляционную функцию случайного процесса.

Иногда используют нормированные автокорреляционные функции:

    

Для стационарного процесса:

     .

Если процесс не только стационарный, но и эргодический, усреднение по множеству может быть заменено усреднением по времени в пределах одной реализации:

Условие эргодичности для стационарного процесса с нулевым средним значением:

Это определяет стремление функции корреляции к нулю с увеличением временного сдвига t. Можно ввести интервал корреляции , который определяет время статистической зависимости между мгновенными значениями случайного сигнала.

Метод  определения  спектральной  плотности мощности по корреляционной функции

Спектральная плотность мощности стационарного случайного процесса и его корреляционная функция связаны согласно теореме Винера – Хинчена парой преобразования Фурье:

.

Для действительных стационарных случайных функций

.

Измерения носят косвенный характер, так как непосредственно измеряют Kх, а спектр плотность вычисляют согласно приведенному выражению. Имеет место оценка

,

.

При экспериментальном  определении ее значения вычисляются для ограниченного диапазона величин аргумента от 0 до м.к.. Однако, для того, чтобы найти спектральную плотность мощности необходимо просмотреть весь участок изменения аргумента от до . Отсечение участка кривой для может привести к значительным искажениям спектра в низкочастотной области.

Эти искажения можно уменьшить, если использовать следующую оценку

,

где – весовая функция, которую часто называют «окном» (корреляционным окном). Выбор «окна» зависит от характера определяемого спектра мощности.

Заключение

Спектральная плотность мощности (СПМ) в физике и обработке сигналов — функция, описывающая распределение мощности сигнала в зависимости от частоты, то есть мощность, приходящаяся на единичный интервал частоты. Имеет размерность мощности, делённой на частоту, то есть энергии. Например в СИ: Вт/Гц = Вт/с−1 = Дж.

Часто термин применяется при описании спектральной мощности потоков электромагнитного излучения или других колебаний в сплошной среде, например, акустических. В этом случае подразумевается мощность на единицу частоты на единицу площади, например: Вт/Гц/м2.

Спектральная плотность мощности стационарного случайного процесса и его корреляционная функция связаны согласно теореме Винера – Хинчена парой преобразования Фурье:

.

Список использованной литературы

  1.  Интернет ресурс http://dee.karelia.ru/files/circuit/Ps6.htm
  2.   Отнес Р., Эноксон Л. Прикладной анализ временных рядов. Основные методы. — М.: Мир, 1982.
  3.  Интернет ресурс http://scask.ru/book_brts.php?id=32

 

А также другие работы, которые могут Вас заинтересовать

67096. Как стать ответственным 52 KB
  Напишите ответственный на доске и попросите учащихся дать определение этому понятию. Спросите учащихся могут ли люди стать более ответственными в своих поступках. Если да то как Например стараться всегда приходить вовремя усердно работать говорить правду осознавать ошибки выражать свои мысли и идеи быть лидером...
67097. Карнавал квітів 25 KB
  Нарешті всі ви завітали А ми боялись заблукали Ласкаво просимо Будьте як вдома Знайомтесь з усіма що ще не знайомі. Сонечко: За горами за лісами За широкими полями Серед квітів і дерев Став палац там неосяжний. Король квітів: Познайомити вже час з вихователями вас.
67098. Свято до дня Валентина «Карнавал квітів» 1.97 MB
  Oh, endless sky, full of light and stars at night Bless our hearts and make them bright We ask for love, on lap we praise Get down here, with all your grace. З'являється "Her Majesty, Love". (господарка свята) - Joy, happiness, beauty I'll send to your hearts I'll make you be sweethearts
67099. Гори Карпати 175.5 KB
  Мета: продовжувати формувати уявлення про природу України поняття гори; сформувати поняття Карпатські гори; формувати навички роботи з картами схемами зошитом підручником; розвивати пізнавальний інтерес спостережливість творчі навички; виховувати любов та дбайливе ставлення до природи патріотичні та естетичні почуття.
67100. Україна на карті. Найбільші міста України 166 KB
  Загальнопізнавальні цілі: продовжити формувати уявлення учнів про географічне розміщення України її кордони сусідство з іншими країнами; ознайомити з історико етнографічними регіонами та найбільшими містами України. Фізична карта України Розуміння знає розташування України знаходить її столицю на карті...
67103. Загальношкільний захід учнів 1-4 класів, присвячений Дню Збройних Сил України 57 KB
  А першими захисниками нашої неньки України були козаки. Демонструйте свою спритність Розум а ще вроду Щоб гриміло: разом Козацькому роду нема переводу Козаки Сини Твоєї Батьківщини В них сила духу непоборна Козацтво слава України Це гордість наша всенародна Зустрічайте наших учасників звучить марш...
67104. НАЩАДКИ КОЗАЦЬКОЇ СЛАВИ 843 KB
  Державний та козацький прапори дозволяється внести учням 4-а класу Онищіку Михайлу; бронзовому призеру Донецької обл. по военно-спортивному многоборью.та учню 4-б класу Гладкову Дані; бронзовому призеру чемпіону Європи "Боевое многоборье"