76353

Гидравлические методы контроля герметичности

Лекция

Физика

Область применения пробные и контрольные вещества. Контроль на герметичность = течеискание относится к виду НК качества изделий проникающими веществами ГОСТ 18353 79. Степень герметичности количественная характеристика герметичности которая характеризуется суммарным расходом вещества через течи. Натекание проникновение вещества извне внутрь герметизированного объекта под действием перепада общего или парциального давлений.

Русский

2015-01-30

77.23 KB

2 чел.

            Лекция 13  Гидравлические методы контроля герметичности.

     План лекции.  Область применения, пробные и контрольные вещества. Физические основы: вязкость жидкостей и газов, виды течений и прохождение веществ через течи. Выбор метода контроля герметичности по его чувствительности. Гидравлический, газоаналити-ческий методы, метод испытания сварных соединений керосином.

 Контроль на герметичность (= течеискание), относится к виду НК качества изделий проникающими веществами (ГОСТ 18353 - 79). Течеискание — это вид испытаний, основанный на регистрации веществ, проникающих через течи (ГОСТ 26790 - 85).

Герметичность — это свойство конструкций препятствовать проникновению через них веществ (газовых, жидких или парогазовых).

Течь — канал или пористый участок в конструкции, нарушающий ее герметичность. При контроле на герметичность о наличии течей судят по количеству газа или жидкости, протекающих через них в единицу времени.

Абсолютную герметичность обеспечить и проконтролировать невозможно. Исходя из этого, контролируемые конструкции считаются герметичными, если переток газа и жидкости через стенки и соединения не приводит к нарушению нормального функционирования объекта контроля в течение его срока эксплуатации или к ухудшению его характеристик за время хранения.

Степень герметичности - количественная характеристика герметичности, которая характеризуется суммарным расходом вещества через течи. Количество газа Q определяется как произведение давления газа Р на занимаемый объем V:

(13.1) .

Поток газа — это его количество, протекающее через канал-течь. Это одно из основных понятий, используемых в течеискании. Изменение количества газа при постоянстве занимаемого объема

(13.2)

Если это изменение происходит во времени t, то

где J — поток газа, необходимый для изменения давления на dP в сосуде объемом V. При постоянном изменений давления во времени поток газа (м3Па/с=Вт)

(13.3)

где ΔР — изменение давления за интервал времени Δt.

Физический смысл того, что поток измеряется в единицах мощности, состоит в том, что произведение давления на объем — энергия, запасенная в газе, а изменение энергии во времени — мощность. Однако на практике чаще используется размерность потока газа в м3Па/с.

Натекание — проникновение вещества извне внутрь герметизированного объекта под действием перепада общего или парциального давлений.

Утечка — истечение вещества из герметизированного объекта. Натекание и утечка оцениваются потоком газа и имеют его размерность.

Для однозначности характеристики течи и возможности сопоставления степени негерметичности изделий, испытываемых и работающих в различных условиях, вводится понятие нормализованной течи. Это поток воздуха, перетекающий через течь из атмосферы в вакуум при комнатной температуре.

В процессе испытания на герметичность используют пробные, балластные и индикаторные вещества. Основные инициирующие функции выполняет пробное вещество, проникновение которого через течь обнаруживается в процессе контроля. В качестве пробных веществ применяются, как правило, газы с малым молекулярным весом, с низким содержанием их в атмосфере, инертные газы, не взаимодействующие с материалом ОК и веществом: внутри них. В таблице 13.1 приведены сведения о некоторых используемых пробных веществах. В ряде случаев роль пробного вещества выполняет рабочее вещество, заполняющее герметизированный объект при эксплуатации или хранении, например фреон в холодильных агрегатах. Рабочее вещество в сочетании с пробным веществом иногда может усиливать эффект индикации. В других случаях технические условия на изделия не допускают контакта рабочего вещества с пробным, тогда процесс испытаний таких изделий на герметичность усложняется.

Таблица 13.1. - Газы, используемые как пробные вещества

Для создания большого перепада давления, повышения чувствительности испытаний при малых концентрациях пробных веществ используется балластное вещество, например воздух при повышенном избыточном давлении. Так поступают тогда, когда возникает задача экономии пробного вещества, например гелия, при многоцикловых испытаниях или при испытании больших объемов.

При испытании оборудования химическим методом часто применяют индикаторное вещество, которое в результате взаимодействия с пробным веществом способствует формированию сигнала о наличии течи.

Норма герметичности характеризуется суммарным расходом вещества через течи герметизированного изделия, при котором сохраняется его работоспособное состояние. Как правило, наибольший суммарный расход вещества определяется расчетом и устанавливается нормативно-технической документацией. Обычно норма герметичности устанавливается (рассчитывается) конструктором.

Технологический критерий герметичности это требования потребителя в виде условия, при котором возможна эксплуатация изделия или технологического оборудования.

Методы испытания на герметичность. Методы контроля герметичности разделяются на три группы в зависимости от вида применяемых пробных веществ:

а) газовые, в качестве пробного вещества используется газ (гелий, аргон, воздух и др.);

б) газо-гидравлические, в качестве пробного вещества используется газ (воздух), а жидкость играет роль вспомогательной среды при определении факта и места утечки газа;

в) гидравлические, в качестве пробного вещества используется жидкость (вода, масло).

     ПНАЭГ-7-019-89.  Контроль герметичности. Газовые и жидкостные методы. Гидравлический способ контроля состоит в том, что в контролируемом изделии создается давление воды. Место расположения дефекта устанавливается визуально по появлению струй, капель и потоков воды. Давление испытания и длительность нахождения изделия под давлением устанавливаются проектной конструкторской документацией и указываются в чертежах.

    Люминесцентно-гидравлический способ состоит в том, что в контролируемом изделии создается избыточное давление водного раствора люминофора определенной концентрации в течение заданного времени. Место расположения дефекта устанавливается после увлажнения контролируемой поверхности по свечению люминофора в лучах ультрафиолетового света. После герметизации контролируемое изделие опрессовывается люминесцентным водным раствором динатриевой и аммониевой солей флуоресцеина с концентрацией 0,09-0,1% (1-0,9 г/л) до давлений, требуемых чертежом или соответствующей технической документацией. Давление при проведении контроля не должно превышать значения, регламентируемого ПНАЭ Г-7-008-89.

При проведении контроля гидравлическим способом с люминесцентным индикаторным покрытием на наружную поверхность контролируемого изделия наносят индикаторное покрытие, изделие опрессовывают водой, выдерживают при испытательном давлении в течение заданного времени и осматривают контролируемую поверхность в лучах ультрафиолетового света. При наличии течи вода проникает на наружную поверхность изделия и в месте дефекта на индикаторном покрытии возникает свечение.

    Способ контроля наливом воды без напора. Налив воды в изделие осуществляется на высоту, указанную в проектной (конструкторской) документации. Места расположения дефектов устанавливаются визуально по появлению струй, потеков и капель воды на контролируемой поверхности. Продолжительность нахождения воды в контролируемом изделии указывается в проектной (конструкторской) документации с учетом времени, необходимого для осмотра всей контролируемой поверхности.

        Способ контроля люминесцентными проникающими жидкостями заключается в том, что на поверхность изделия наносится проникающая жидкость на основе керосина, а на противоположную поверхность - адсорбирующее покрытие. После выдержки в течение заданного времени при периодическом (через 15 - 20 мин) нанесении добавочного количества проникающей жидкости проводится осмотр поверхности в лучах ультрафиолетового света. В местах течей проникающая через стенку изделия люминесцентная жидкость дает свечение в лучах ультрафиолетового света. Время выдержки контролируемой поверхности в контакте с керосином определяют в зависимости от толщины свариваемого металла или расчетной высоты углового шва и положения шва в пространстве.

Нижнее положение:

Толщина металла или катет шва:

До 6 мм - 40 мин

6 - 24 мм - 60 мин

Свыше 24 мм - 90 мин

Вертикальное, горизонтальное и потолочное положения:

Толщина металла или катет шва:

До 6 мм - 60 мин

6 - 24 мм - 90 мин

Свыше 24 мм - 120 мин

      Выбор метода контроля течеисканием зависит от класса герметичности изделия, устанавливаемого конструктором и чувствительности метода. В атомной энергетике в зависимости от условий эксплуатации и возможностей ремонта все оборудование делят на 5 классов герметичности (табл. 13.1). Каждому из классов герметичности соответствуют определенные методы испытания в зависимости от их чувствительности. К I классу, например, относят парогенераторы, трубопроводы 1-го контура и другие ответственные изделия, надежность которых должна быть очень высока в силу специфических особенностей их эксплуатации.

    Таблица 13.1. -  Классы герметичности изделий в атомной энергетике.

Класс герметичности

Диапазон выявляемых натеканий (дефектов) по воздуху

Метод течеискания

Пробное вещество

Индикатор

см3/год

м3•Па/с

I

от 2•10-2

от 3,76•10-3 
до 3,75•10-2

Гелиевая камера, вакуумная присоска

Гелий

Масс-спектрометр

II

св. 2•10-1

св. 3,75•10-2

Гелиевый щуп

Гелий

Масс-спектрометр

 

до 7,51•10-1

Люминесцентно-гидравлический

Вода + пенетрант

Течь и свечение

III

св. 2 до 4

св. 3,75•10-1 до 7,51•10-1

Гидравлический с люминесцентным индикаторным покрытием

Вода + пенетрант

Течь и свечение на индикаторных ленте и массе

IV

св. 4 до 2•103

св. 7,51•10-1

Галоидный щуп

Фреоно-воздушная смесь

Прибор

до 3,75•10-2

Цветной и люминесцентный капиллярный

Пенетрант

Пятна, свечение

V

св. 2•103

св. 3,75•102

Керосиновая проба

Керосин

Пятна на меловом фоне

Пузырьковый

Воздух, азот

Пузырьки

Опрессовка воздухом


      


 

А также другие работы, которые могут Вас заинтересовать

42153. МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ 360.5 KB
  Линейная модель множественной регрессии выглядит следующим образом: Y = β0 β1x1 β2x2 βkxk ε где Y – зависимая переменная результативный признак; x1xk – независимые или объясняющие переменные; 0 1 k – коэффициенты регрессии;  – ошибка регрессии. Общая последовательность построения множественной линейной регрессионной модели следующая: Оценка параметров уравнения; Оценка качества регрессии; Проверка на мультиколлинеарность ее исключение; Проверка на гетероскедастичность коррекция на...
42154. ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ МАГНИТНОГО ПОЛЯ ЗЕМЛИ С ПОМОЩЬЮ ТАНГЕНС – ГАЛЬВАНОМЕТРА 102.5 KB
  Цель работы определение одного из элементов земного магнетизма – горизонтальной составляющей Н0 магнитного поля Земли с помощью тангенс – гальванометра. В точках Земли лежащих на магнитных полюсах напряженность магнитного поля Земли имеет вертикальное направление. В любой другой точке Земли напряженность ее магнитного поля можно разложить на вертикальную и горизонтальную составляющие: Существование магнитного поля в любой точке Земли можно установить с помощью магнитометра или магнитной стрелки.
42155. СНЯТИЕ ПЕТЛИ ГИСТЕРЕЗИСА И КРИВОЙ НАМАГНИЧИВАНИЯ ФЕРРОМАГНЕТИКА С ПОМОЩЬЮ ОСЦИЛЛОГРАФА 82 KB
  Величины Н и В можно определить зная величину напряжений вызывающих отклонение электронного луча на одно деление по осям Х и Y при данном усилении: где координаты петли гистерезиса в единицах координатной сетки kx ky – коэффициенты пропорциональности определяемые для каждого осциллографа. Величина этой энергии приходящейся на единицу объема образца w определяется в координатах в виде w = BdH и равняется...
42156. ОПРЕДЕЛЕНИЕ ТОЧКИ КЮРИ ФЕРРОМАГНЕТИКА 60.5 KB
  Менделеева обладают железо никель кобальт некоторые редкоземельные металлы а также их сплавы причем эти вещества проявляют ферромагнитные свойства лишь при температурах ниже некоторой определенной для каждого элемента или сплава температуры называемой точкой Кюри. Температура Кюри равна например 7700С для железа 3580С для никеля 11300С для кобальта 160С для гадолиния 1680С для диспрозия. При более высокой температуре и в самой точке Кюри вследствие теплового движения атомов в ферромагнетиках разрушается магнитный порядок и они...
42157. ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА 90 KB
  Магнитное поле соленоида представляет собой результат сложения полей создаваемых круговыми токами расположенными вплотную и имеющими общую ось. Сечение соленоида схематически показано на рис. Распределение магнитной индукции по длине соленоида вдоль его оси описывается выражением 1: Рис.
42158. ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА С ПОМОЩЬЮ МАГНЕТРОНА 119 KB
  Пусть частица с зарядом q движется в электрическом поле напряженности . Сила действующая на частицу в поле равна . Нетрудно видеть что ускорение заряженной частицы в электрическом поле зависит от ее удельного заряда .
42159. ИЗУЧЕНИЕ СИЛЫ ВЗАИМОДЕЙСТВИЯ ДВУХ КРУГОВЫХ КОНТУРОВ С ТОКОМ 105 KB
  Механическое взаимодействие контуров с током под действием силы Ампера можно представить следующим образом: один контур создает магнитное поле которое воздействует на проводники с током второго контура и наоборот. Таким образом задача анализа взаимодействия контуров расчленяется на две: первая – расчет магнитного поля создаваемого первым контуром в месте расположения витков второго и вторая – определение силы действующей на второй контур. 3 показаны силы действующие на два произвольных симметрично...
42160. ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ ДИА- И ПАРАМАГНЕТИКОВ 84 KB
  4 Тогда вектор результирующей магнитной индукции будет определяться с учетом 3 и 4: 5 где 0 = 4 107 Гн м – магнитная постоянная  = 1  относительная магнитная проницаемость вещества показывающая во сколько раз изменяется магнитное поле в веществе по сравнению с магнитным полем в вакууме: ....
42161. ИЗУЧЕНИЕ СВОБОДНЫХ И ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В КОНТУРЕ 115.5 KB
  Простейшими колебаниями являются гармоничные колебания происходящие по закону синуса или косинуса:    Сos t или  =  Sin t  где  мгновенное значение колеблющейся величины отклонение наблюдаемой величины от положения равновесия в момент времени t  амплитуда колебания – наибольшее отклонение колеблющейся величины от её равновесного значения;  циклическая или круговая частота колебаний  начальная при t = 0 фаза колебаний. Гармонические колебания являются...