76354

Галоидные и другие методы контроля герметичности

Лекция

Физика

Особенности массспектрометрического контроля герметичности. Общие критерии оценки герметичности сварных и паяных соединений Манометрический метод контроля герметичности изделий основан на регистрации изменения испытательного давления контрольного или пробного вещества в результате имеющихся в изделии неплотностей. В качестве контрольного вещества при манометрическом методе контроля в зависимости от требований к контролю могут быть применены рабочие жидкости вода а также газы воздух азот аммиак аргон а в ряде случаев гелий.

Русский

2015-01-30

546.5 KB

4 чел.

Лекция 14   Галоидные и другие методы контроля герметичности.

План лекции.  Манометрический метод: способ падения давления, способ дифференциального манометра - измерительные схемы. Галоидный метод: галогенные течеискатели, атмосфер-ный и вакуумный датчики, контрольные и пробные газы. Особенности масс-спектрометри-ческого контроля герметичности. Пузырьковый метод и его разновидности: пневматический, пневмогидравлический, вакуумный. Общие критерии оценки герметичности сварных и паяных соединений

 Манометрический метод контроля герметичности изделий осно ван на регистрации изменения испытательного давления контрольного или пробного вещества в результате имеющихся в изделии неплотностей. Испытаниям на герметичность манометрическим методом подвергают замкнутые системы — сварные, паяные, клепаные и т. п. резервуары, гидравличес-кие и газовые системы, их   элементы  и другие изделия.

     В качестве контрольного вещества при манометрическом методе контроля в зависимости от требований к контролю могут быть применены рабочие жидкости, вода, а также газы — воздух, азот, аммиак, аргон, а в ряде случаев гелий. В качестве пробного вещества применяют углекис-лоту, эфир, бензин, ацетон и т. п, Индикацию утечки этим, методом осуществляют по показания стрелочных приборов.

      Различают два основных способа реализации манометрического метода контроля герметич-ности: способ падения давления и способ дифференциального манометра.

          Способ падения давления (Рис. 14.1) применяют при контроле суммарной степени герметичности сварных и других емкостей, гидрогазовых систем и их элементов,  предназна-ченных для работы под давлением.

Рисунок 14.1 Схема манометрического метода контроля герметичности

                            по способу падения давления. – 1 – редукционный клапан; 2 – манометр

                            регулирования редукционного клапана; 3 – вентиль заполнения;

                            4 – предохранительный клапан; 5 – контролируемое изделие;

                            6 – контрольный манометр; 7, 8 – вентили сброса давления .

      После   проведения   контроля   сварных и других соединений изделия радиационным,    ультразвуковым    и другими методами НК проводят опрессовку изделия на прочность.   Для этого изделие с элементами контрольно-испытательной системы герметизируют известными способами.  Для опрессовки изделие заполняют контрольным веществом под давлением.    

    Величину утечки контрольного газа определяют по падению в объеме контролируемого изделия давления, которое измеряют  контрольным манометром. Чувствительность способа контроля   герметичности   по падению давления можно определить по формуле

                                                       q = CVa/t,

где V —внутренний объем контролируемого изделия;

     t —время выдержки;

     а — цена деления шкалы контрольного манометра;

    С - коэффициент, учитывающий   соотношение   между единицами измерения   течей.

         Чувствительность данного метода составляет   (l…7) l0-3   мм3МПа/с.

      Способ дифференциального манометра, в основном, применяется для обнаружения и оценки величины локальных утечек в замкнутых вакуумных, газовых или гидравлических системах, рис.14.2.

Рисунок 14.2 Схема включения (а) и устройство (б) дифференциального

         манометра. – 1 – насос; 2 – диффренциальный манометр; 3 – контролируемое

                   изделие; R1, R2 – сопротивления; Г – гальванометр; М – манометры; Л – ловушка.

        Сущность способа заключается в следующем. С помощью насоса поз. 1 контролируемое изделие 3 вакуумируют до давления около 6,6 -10 -3 Па. Сварные и другие соединения изделия, в которых возможны неплотности, снаружи обдувают пробным газом или опрыскивают жидким пробным веществом. Наличие пробного вещества в контролируемом объеме устанавливают с   помощью  дифференциального   манометра поз. 2.

        Дифференциальный манометр содержит два теплоэлектрическнх манометра М сопротивления. Чувствительные элементы манометров включены в мостовую схему. Перед одним из манометров расположена ловушка Л, охлаждаемая   жидким   азотом.

      В отсутствие пробного вещества через течи в изделие проникает лишь атмосферный воздух, который не вымораживается при температуре жидкого азота и поэтому проникает в оба манометра М. Поэтому условия измерений для обоих манометров одинаковы, и в это время производится балансировка моста (отсчет нуля   по   измерительному   прибору   Г).

      При обдувании или опрыскивании контролируемых мест изделия пробным веществом, в качестве которого применяют эфир, бензин, ацетон, бутан и т. п., вымораживаемые при температуре жидкого азота пары пробного вещества попадают в один из манометров и не проходят через ловушку во второй. В результате происходит разбалансировка моста, а напряжение разбалансировки позволяет судить о величине течи в изделии.

         Данным способом при давлении в изделии 6,6-10 -3 Па возможно обнаружение утечек, соответствующих изменению давления 2,64 • 10- 6 Па.

       Галоидный метод контроля герметичности изделий. В практике контроля герметичности изделий необходимо обнаруживать течи, много меньше тех, что могут выявлять указанные выше методы. Слабые течи  выявляют галоидным и гелиевым течеисканием.
      При галоидном методе в качестве пробного газа используют фреон (х
лордифторметан, химическая формула CHClF2), обладающий высокой проникающей способностью.       

      Индикатором при галоидном течеискании служит электронный прибор, содержащий чувствительный элемент в виде платинового диода, анод и коллектор которого раскалены до 800-900 °С и разделены воздушным или вакуумным промежутком. При попадании в этот промежуток молекул фреона электрический ток через диод резко возрастает, что фиксируется стрелочным прибором. Промышленностью выпускаются переносные галоидные течеискатели ГТИ-3А, ГТИ-6 и БГТИ-5, отличающиеся друг от друга по конструктивному исполнению.
Течеискатель ГТИ-3А состоит из выносного щупа с датчиком, предназначенным для работы в атмосферных условиях, и измерительного блока со стрелочным прибором и звуковым индикатором-телефоном. В приборе ГТИ-6 помимо основного атмосферного датчика имеются вакуумный датчик, выносной обдуватель с регулируемым потоком и регистрирующий блок.  

 

Рисунок 14.3  Схема галоидного метода контроля герметичности способом щупа с заполнением контролируемого изделия чистым фреоном: 1 - баллон с фреоном, 2-5 - вентили, 6 - контролируемое изделие, 7 - щуп с атмосферным датчиком галогенного течеискателя, 8 - механический вакуумный насос, 9 - компрессор, 10 - конденсатор.
   

Течеискатель БГТИ-5 имеет автономное питание от батареи аккумуляторов и особенно удобен при испытании изделий большой протяженности в монтажных и полевых условиях.
В практике обычно при галоидном течеискании используют способ щупа (рис. 14.3). В закрытом сосуде создают небольшое избыточное давление атмосферы фреона. Щупом галоидного течеискателя производят «обнюхивание» наружной поверхности изделия вдоль всей длины шва. Скорость перемещения щупа вдоль шва - 10 - 25 мм/с.

        

                    Рисунок 14.4. Портативный фреоновый течеискатель PHOCHECK

Течеискатель Phocheck, рис. 14.4,  используется для определения концентраций летучих органических соединений (ЛОС) и определения мест их утечек из любого оборудования.   

Прибор работает более чем с 200-ми ЛОС, такими как: бензин, ацетон, нонан, октан, пентан, бензол, изобутан, стирол, толуол и многими другими.
     Основное предназначение газоанализатора - поиск утечек из резервуаров, сосудов и трубопроводов, а также для текущего контроля окружающей среды в целях обеспечения безопасности персонала в местах проведения работ.
      В памяти прибора имеется список нескольких сотен ЛОС и их комбинаций из которого легко выбрать контролируемое вещество. Блок хранения информации позволяет запомнить до 20 тысяч измеренных значений. Управление прибором осуществляется 6 клавишами. Возможна передача данных ч/з ИК порт.

Масс-спектрометрический метод. Метод основан на создании повышенного парциального давления пробного вещества (газа) в смеси веществ с одной стороны поверхности объекта контроля и отбора проникающего через течи пробного вещества с другой стороны для масс-спектрометрического анализа на присутствие молекул пробного газа. Анализ осуществляется путем ионизации пробного вещества с последующим разделением ионов по отношению их массы к заряду под действием электрического и магнитного полей. Основные требования по проведению масс-спектрометрического неразрушающего контроля регламентированы ГОСТ 28517-80.

В качестве пробного газа обычно используют гелий. Он обладает малой молекулярной массой и хорошо проникает через малые течи. Гелий химически инертен, дешев и безопасен в применении. По соотношению массы иона к его заряду (т/e) гелий очень сильно (на 25 %) отличается от ближайших ионов других газов, что облегчает его обнаружение и выполнение измерений. Поэтому масс-спектрометрические течеискатели, рис. 14. 5,  часто называют гелиевыми.

Рисунок 14.5  Гелиевый масс-спектрометрический течеискатель 990 CLD, 990 dCLD. Модульный для встраивания в существующую вакуумную систему. С цифровым дисплеем.
Порог чувствительности 1-10
-10 м3Па/с.

Пузырьковый метод. Сущность пузырькового метода контроля герметичности заключается в регистрации локальных утечек в объекте по появлению пузырьков контрольного газа в индикаторной жидкости или на индикаторном покрытии. Метод применяют для контроля герметичности газонаполненных неоткачиваемых объектов-ёмкостей, элементов гидравличес-ких и газовых систем и др., работающих под давлением и имеющих сравнительно небольшие размеры.

     Способ опрессовки с погружением в жидкость (метод аквариума). Способ аквариума - один из наиболее распространенных в промышленности способов контроля на герметичность, в частности соединений и основного материала объектов.Испытуемый объект наполняют контрольным газом до предварительного дав ления и затем полностью погружают в ёмкость с жидкостью под атмосферным давлением, рис 14.6.

Рисунок 14.6  Схема установки для испытаний способом аквариума. – 1 – объект испытания;

2 – ёмкость (кессон); 3 – манометр; 4 – пневмоклапан; 5 – предохранительный клапан.

     Если при погружении объекта в жидкость на его поверхности образуются воздушные пузыри, их необходимо снять кистью. После этого объект заполняют контрольным газом (обычно воздухом) до давления, равного испытательному, и выдерживают в жидкости в течение времени, достаточного для осмотра объекта, но более 3 мин. Появление газовых пузырьков свидетельствует о течах в объекте испытаний.

   Способ опрессовки с пеноплёночным индикатором. Сущность способа опрессовки с пе-нопленочным индикатором состоит в следующем: на контролируемые поверхности объекта, находящегося под избыточным давлением, наносят тонкий слой специального пенопленочного индикатора. Контрольный газ, проникая через микродефекты объекта, оказывает механическое воздействие на пленку (пену) индикатора и, накапливаясь в месте дефекта, деформирует ее. При этом образуются пузырьки или пенные вздутия, мелкие пенные «шапки», оголенные участки поверхности, которые фиксируются визуально, рис. 14.7

Данный способ - это усовершенствованный широко применяющийся в промышленности способ обмыливания.

Рисунок 14.7 Опрессовка регулирующего вентиля  пеноплёночным индикатором.

 

PAGE  6


 

А также другие работы, которые могут Вас заинтересовать

29761. Основные понятия химической термодинамики. Первый закон термодинамики. Закон Гесса. Теплоёмкость 26.25 KB
  Часть системы с присущей ей химическим составом и макроскопическими свойствами называется фазой. В каждый момент времени состояние системы характеризуется параметрами состояния которые разделяются на экстенсивные и интенсивные параметры. Интенсивные определяются лишь специфической природой системы: давление температура химический потенциал и т. Термодинамическими параметрами состояния называются параметры которые измеряются непосредственно и выражают интенсивные свойства системы.
29762. Второй и третий закон термодинамики. Энтропия. Термодинамический потенциал 21.3 KB
  Второй закон термодинамики Все процесс в которых один вид энергии превращается в другой строго подчиняются первому закону термодинамики. Критерий осуществимости процесса в том или ином направлении и устанавливаются вторым законом термодинамики. Математическое выражение второго закона термодинамики Следствием второго закона термодинамики является существование особой функции состояния.
29763. Химический потенциал. Химическое равновесие. Закон действующих масс. Константы равновесия 21.55 KB
  Химическое равновесие Эксперименты показывают что химические реакции одновременно протекают в двух направлениях. Таким образом химическое равновесие помимо равенства скоростей прямой и обратной реакции и постоянства концентраций при неизменных внешних условиях обладают ещё следующими свойствами: Подвижностью т. Возможностью достижения равновесия как со стороны исходных веществ так и со стороны продуктов реакции. С термодинамической точки зрения они необратимы и работа их не является максимальной однако можно мысленно представить...
29764. Фазовое равновесие в гетерогенных системах. Правило фаз Гиббса. Диаграммы состояния 32.71 KB
  Правило фаз Гиббса. Фазовое равновесие в гетерогенных системах. Правило фаз Гиббса. При рассмотрении фазовых равновесий в системах необходимо различать фазы компоненты соединения твёрдые растворы и механические смеси.
29765. Классификация проводящих материалов, особенности тонкоплёночных металлов, проводящие материалы в микроэлектронике 52.44 KB
  Удельное сопротивление алюминия в 16 раза больше удельного сопротивления меди но алюминий в 35 раза легче меди. Недостатками меди являются её подверженность атмосферной коррозии с образованием оксидных и сульфидных плёнок. Например электропроводность меди очень чувствительна к наличию примеси. Содержание в меди 05 никеля олова или алюминия снижает электропроводность меди от 25 до 40.
29766. Классификация полупроводниковых материалов. Собственные и примесные полупроводники. Примеси в полупроводниках 29.49 KB
  Примеси в полупроводниках. Преднамеренное введение примеси называется легированием соответствующие примеси – легирующие а полупроводник – легированным или примесным. Кроме легирующих примесей существуют случайные или фоновые примеси непреднамеренно вводимые в полупроводник в процессе его производства и обработки. Фоновые примеси как правило ухудшают основные свойства материала и затрудняют управление ими.
29767. Монокристаллический кремний. Его применение, получение и свойства 36.46 KB
  Применение полупроводникового кремния. тонн кремния ежегодно Япония США Германия. Это базовый материал микроэлектроники который потребляет 80 полупроводникового кремния. Более 90 всех солнечных элементов изготавливаются из кристаллического кремния.
29768. Поликристаллический кремний. Применение, свойства, получение 26.53 KB
  Применение поликристаллического кремния Поликристаллический кремний весьма распространённый материал в технологии полупроводниковых приборов и интегральных схем. Возможность получения поликристаллического кремния с электрическим сопротивлением отличающимся на несколько порядков а также простота технологии привели к тому что он используется в технологии интегральных схем с одной стороны в качестве высокоомного материала затворов нагрузочных резисторов а с другой в качестве низкоомного материала межсоединений. Достоинства разводки на основе...