76365

Магнитная дефектоскопия

Лекция

Физика

По способу получения первичной информации различают следующие методы магнитного контроля: магнитопорошковый МП основанный на регистрации магнитных полей рассеяния над дефектами с использованием в качествеиндикатора ферромагнитного порошка или магнитной суспензии; магнитографический МГ основанный на регистрации магнитных полей рассеяния с использованием в качестве индикатора ферромагнитной пленки; феррозондовый ФЗ основанный на измерении напряженности магнитного поля феррозондами; эффекта Холла ЭХ основанный на...

Русский

2015-01-30

301.42 KB

8 чел.

Лекция 6. Магнитная дефектоскопия

   План лекции. Физическая сущность магнитных методов НК: магнетики, ферромагнетизм, внешнее намагничивающее силовое поле, магнитная индукция, явление магнитного гистерезиса. Магнитопорошковая дефектоскопия (МПД), индикация дефектов, чувствительность.

Для обнаружения в изделиях из ферромагнитных материалов различных дефектов: нарушений сплошности, отклонений от заданных геометрических размеров, несоответствия структурного состояния техническим условиям, а также для физического анализа при исследовании фазовых превращений в сплавах применяются магнитные методы.

Магнитные методы контроля основаны на измерении различных магнитных характеристик, являющихся достаточно чувствительными индикаторами для обнаружения указанных выше дефектов. Магнитные методы высокопроизводительны, не требуют нарушения целостности изделия и с успехом применяются в промышленной и эффективно заменяя контроль по механическим свойствам или проверку химического состава и т. п.

           Магнитный вид неразрушающего контроля применяют в основном для изделий из ферромагнитных материалов. Магнитные характеристики таких материалов являются информативными параметрами, так как зависят от их физико-механических свойств, химического состава, вида механической и термической обработки, а также от размеров и сплошности изделий.
         К числу информативных параметров, используемых в магнитном неразрушающем контроле (НК), относятся: коэрцитивная сила 
Нс,намагниченность М, остаточная магнитная индукция Вr начальная или максимальная магнитная проницаемость (I, параметры петли гистерезиса В(Н), параметры скачков Баркгаузена, параметры магнитооптического эффекта .
       По способу получения первичной информации различают следующие методы магнитного контроля:

  1.  магнитопорошковый (МП), основанный на регистрации магнитных полей рассеяния над дефектами с использованием в качестве
    индикатора ферромагнитного порошка или магнитной суспензии;
  2.  магнитографический (МГ), основанный на регистрации магнитных полей рассеяния с использованием в качестве индикатора ферромагнитной пленки;
  3.  феррозондовый (ФЗ), основанный на измерении напряженности магнитного поля феррозондами;
  4.  эффекта Холла (ЭХ), основанный на регистрации магнитных полей датчиками Холла;
  5.  индукционный (И), основанный на регистрации магнитных полей рассеяния по

        величине или фазе индуктируемой ЭДС;

  1.  пондеромоторный (ПМ), основанный на регистрации силы отрыва (притяжения) постоянного магнита или сердечника электромагнита от контролируемого объекта;
  2.  магниторезисторный (МР), основанный на регистрации магнитных полей рассеяния магниторезисторами;
  3.  магнитооптический (МП), основанный на визуализации доменной структуры материала с помощью феррит-гранатовой пленки с зеркальной подложкой.

Ферромагнитные материалы относятся к веществам, которые под воздействием внешнего (намагничивающего) магнитного поля способны намагничиваться. При этом они сами в окружающем пространстве создают магнитное поле. Степень намагниченностиопределяется вектором намагниченности М, который пропорционален вектору напряженности H поля, создаваемого ферромагнетиком. Количественно намагниченность, А/м, определяется из выражения

где V — объем вещества; т — элементарный магнитный момент.

 Степень намагниченности М различных материалов под воздействием одного и того же намагничивающего поля напряженностью Я неодинакова. Она зависит от вида материала и его состояния (температура, наличие структурных повреждений и т.д.). Для количественной оценки способности вещества намагничиваться в магнитном поле вводят безразмерную характеристику — магнитную восприимчивость Для изотропного вещества, свойства которого одинаковы во всех направлениях, связь между намагниченностью М и напряженностью магнитного поля Н устанавливается соотношением
                                                                         

          
Напряженностью магнитного поля Н (векторная величина) называется сила, с которой единичный полюс в данной точке пространства отталкивается или притягивается. Напряженность магнитного Поля равна силе, отнесенной к единичному полюсу, Н =F/т; в системе СИ она измеряется в А/м. Поле, созданное в веществе, ориентирует его элементарные магниты, и в окружающем пространстве возникает магнитная индукция (влияние) В.
           
 Магнитной индукцией называется силовая (векторная) характеристика магнитного поля, складывающаяся из индукции внешнего намагничивающего поля и индукции поля, создаваемого ферромагнетиком:
                                                           
,
  где 
 Гн/м – магнитная постоянная (магнитная проницаемость пустоты).
        Магнитная индукция 
В является основной характеристикой магнитного поля, определяющей его величину и направление. В международной системе единиц СИ магнитная индукция измеряется в теслах (Тл). Являясь по определению плотностью магнитного потока, она описывается также уравнением
                                                             
В = Ф/S,
  где Ф — магнитный поток, измеряемый в веберах (Вб), проходящий через контур; 
S –   площадь контура, м2, в направлении, перпендикулярном Ф   Приняв  получим

                                          .
           Величина 
 называется относительной магнитной проницаемостью, она является безразмерной физической величиной, характеризующей магнитные свойства ферромагнетиков. Чем больше проницаемость, тем меньше магнитное сопротивление R, которое обратно пропорционально магнитной проницаемости, т.е. R=1/.
            Ферромагнетики отличаются от парамагнетиков рядом свойств:

  1.  кривая намагничивания, выражающая зависимость между H и В, для парамагнетиков будет прямой, для ферромагнетиков из-за непостоянства она имеет сложный характер;
  2.  магнитная восприимчивость ферромагнетиков при некоторойтемпературе, называемой температурой Кюри (точкой Кюри), исчезает: ферромагнетик размагничивается и превращается в парамагнетик;
  3.  кривые намагничивания и перемагничивания ферромагнетика  не совпадают —  

     происходит своеобразное отставание изменения индукции от изменений напряженности  

     намагничивающего поля. Это явление называют гистерезисом, а замкнутая кривая,  

     изображающая  зависимость ^ В от H при перемагничивании, называется петлей гис-
      терезиса (рис. 6.1).На зависимости 
В от H выделяют ряд характерных точек, имеющих     

    соответствующие названия.
    
 Магнитной индукцией насыщения Вs называют индукцию, соответствующую максимуму М. Дальнейшее увеличение В с ростом Но существляется только за счет роста R, так  как  В =  (H+ М).
       В зависимости от достигнутой величины индукции при перемагничивании различают предельную и частную петли гистерезиса. Предельная петля соответствует намагничиваниюматериала до насыщения 
Вs.

Коэрцитивная сила Нс (от латинского соеrcitio — удерживание) — напряженность магнитного поля, необходимая для полного размагничивания предварительно

               
                                     Рисунок 6.1. Петля магнитного гистерезиса:
намагниченного до насыщения ферромагнетика (получения 
В = 0 по предельной петле гистерезиса). Магнитные свойства ферромагнетиков (в первую очередь сталей) определяются их химическим составом. Введение никеля, марганца, углерода, азота и меди уменьшает начальную магнитную проницаемость  и повышает коэрцитивную силу Нс  

       Одновременное введение кремния, хрома, молибдена, ниобия, вольфрама и ванадия увеличивает ц и уменьшает НсМежду начальной магнитной проницаемостью  и коэрцитивной силой Нс для сталей существует обратно пропорциональная зависимость.

     В  качестве первичных информативных параметров при магнитном неразрушающем контроле чаще всего используют Вs, Вr и Нс.
  
 Магнитные порошки. Магнитные порошки используют для визуализации магнитных полей рассеяния на поверхности контролируемого объекта в зоне дефектов. На частицу ферромагнит-ного порошка, помещенного в такое поле, будет действовать сила, удерживающая его в зоне дефекта. Эта сила прямо пропорциональна градиенту напряженности dH/dx магнитного поля рассеяния:
                                                 

где 
 - магнитная восприимчивость материала порошка; V — объем частицы порошка.
Во внешнем намагничивающем поле частицы порошка существуют не изолированно, а коагулируются и образуют цепочки, что соответственно увеличивает удерживающую силу 
F. Длина цепочки определяется рядом факторов: вязкостью порошка и размером его частиц, напряженностью магнитного поля, шероховатостью поверхности объекта контроля и др.


 

А также другие работы, которые могут Вас заинтересовать

20198. Экология и инженерная охрана природы 44.5 KB
  Экология наука об отношении организма или групп организмов к окружающей среде в соответствии с уровнем организации окружающей жизни. Задачи экологии применительно к деятельности инженернопромышленных предприятий: Оптимальные технологические инженерные и проектноконструкторские решения исходя их минимального ущерба окружающей среде и здоровью человека. Прогноз и оценка возможных отрицательных последствий и действий проективноконструкторских предприятий или технологических процессов для окружающей среды. Своевременное выявление и...
20199. Экологические факторы и их действия 945.5 KB
  Экологические факторы делятся на две категории: Факторы неживой природы или абиотические факторы. Факторы живой природы или биотические факторы. Абиотические факторы в свою очередь делятся на: Климатические освещённость температура влажность атмосферное давление скорость движения ветра Почвенногрунтовые плотность механический состав влагоёмкость воздухопроницаемость Орографические рельеф высота над уровнем моря Химические газовый состав воздуха количество растворённых в воде солей и т.
20200. Популяция, её структура и динамика 350 KB
  Стрелки это каналы передачи вещества энергии и информации. Этот процесс идёт с поглощением энергии которая запасается в химических связях органического вещества. Понятие о трофической цепи Трофическая цепь это цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов до других. упорядоченный поток передачи энергии солнца от продуцентов к консументам различного порядка.
20201. Круговорот веществ в биосфере 106.5 KB
  Он заключается в следующем: горные породы подвергаются разрушению и выветриванию продукты разрушения сносятся потоками воды в Мировой океан. Круговорот воды Нам знакомы 3 состояния воды: твёрдое лёд жидкое собственно вода газообразное водяной пар. Главный источник поступления воды атмосферные осадки а главный источник расхода испарение. Продолжительность кругооборота: океан 3000 лет подземные воды 5000 лет полярные ледники 8500 лет озера 17 лет реки 10 дней вода в живых организмах несколько часов.
20202. Промышленная экология. Промышленное производство и его воздействие на окружающую среду 47.5 KB
  Протяжённость тропосферы 710 километров на полюсах и 1618 километров по экватору. Протяжённость стратосферы примерно 40 километров. До высоты 30 километров температура стратосферы примерно 50оС а затем начинает расти и на высоте 50 километров составляет 10оС. Это связано с наличием в стратосфере озонового слоя расположенного на высоте 2540 километров.
20203. Загрязнение гидросферы 87 KB
  Пресная вода составляет только 25 от всех запасов воды. Примерно 70 пресной воды содержится в ледниках. Ежегодно люди расходуют около 3000 км3 воды из них 150 км3 безвозвратно. Больше всего воды потребляет сельское хозяйство.
20204. Стандартизация и охрана окружающей природной среды 31 KB
  ПДКрз это концентрация которая при ежедневной работе в течение всего рабочего стажа не может вызвать заболевания или отклонения в состоянии здоровья в процессе работы или в отдаленные сроки жизни настоящего и последующего поколения. ПДКав это максимальная концентрация примеси в атмосфере отнесенная к определению времени усреднено значение которой при периодическом воздействии или на протяжении всей жизни человека не оказывая на него вредного влияния включая отдаленные последствия. Это концентрация присутствие которой допустимо не...
20205. Расчёт предельно допустимого выброса вредного вещества в атмосферу 145 KB
  Нарисуем график зависимости концентрации загрязняющего вещества по оси факела выброса от расстояния до источника выброса. Расчёт предельно допустимого выброса состоит из нескольких частей и первая часть расчёт максимальной приземной концентрации. Все формулы даются для двух вариантов: горячего выброса и холодного выброса.
20206. Контроль загрязнения почв 38 KB
  Кроме ПДК в номенклатуру санитарного состояния почв входят показатели: Общее количество аммонийного азота. Общее количество нитратного азота. Общее количество хлоридов. Общее количество пестицидов.