76403

Повышение порядка астатизма

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Увеличение коэффициента усиления разомкнутой системы; 2. Увеличение коэффициента усиления разомкнутой системы является наиболее эффективным методом. Увеличить коэффициент усиления разомкнутой системы можно например за счет увеличения коэффициента усиления электронного усилителя. Увеличение коэффициента усиления разомкнутой системы приводит к уменьшению ошибок во всех типовых режимах т.

Русский

2015-01-30

40.51 KB

5 чел.

Повышение порядка астатизма

Общие методы

Повышение точности систем автоматического управления

К числу общих методов повышения точности САУ относятся:

1. Увеличение коэффициента усиления разомкнутой системы;

2. Повышение порядка астатизма;

3. Применение регулирования по производным от ошибки.

Увеличение коэффициента усиления разомкнутой системы является наиболее эффективным методом. Увеличить коэффициент усиления разомкнутой системы можно, например, за счет увеличения коэффициента усиления электронного усилителя.

Увеличение коэффициента усиления разомкнутой системы приводит к уменьшению ошибок во всех типовых режимах, т.к. он входит в качестве делителя во все коэффициенты ошибок.

Однако, увеличение коэффициента разомкнутой системы уменьшает запас устойчивости и система приближается к границе устойчивости. В этом выражается противоречие между точностью и устойчивостью.

Поэтому увеличение коэффициента разомкнутой системы производится при одновременном повышении запаса устойчивости при помощи корректирующих устройств.

Повышение порядка астатизма используется для устранения установившихся ошибок в различных типовых режимах. Физически повышение порядка астатизма осуществляется за счет введения в канал регулирования интегрирующих звеньев.

Структурная схема регулирования с дополнительным интегрирующим звеном изображена на рис. 8.1

 

Рис. 8.1

 

Передаточная функция интегрирующего звена:

где − коэффициент передачи интегрирующего звена.

− передаточная функция разомкнутой системы до введения интегрирующего звена.

В качестве примера рассмотрим следящую систему множетельно-делительного устройства, изображенную на рис. 1.9. Для нее была получена передаточная функция разомкнутой системы в виде:

которая соответствует астатизму первого порядка. С целью повышения порядка астатизма введем в нее дополнительное последовательное интегрирующее звено (например, интегрирующий операционный усилитель) с передаточной функцией

Тогда передаточная функция разомкнутой системы будет иметь вид:

где .

Так как порядок астатизма стал равен двум, то будет ликвидирована скоростная ошибка 

Сложив числитель и знаменатель W(P), получим характеристическое уравнение замкнутой системы: в котором коэффициент при P в первой степени равен нулю. Поэтому здесь не выполняется необходимое, но недостаточное условие устойчивости (все коэффициенты характеристического уравнения должны быть положительными) и система будет неустойчива при любых параметрах системы.

Для устранения этого недостатка разработан другой путь повышения порядка астатизма, который не дает заметного уменьшения запаса устойчивости. Этот путь заключается в применении изодромных устройств, в которых дополнительное интегрирующее звено включается не последовательно с сигналом ошибки, а параллельно сигналу ошибки.

Структурная схема следящей системы множетельно-делительного устройства с изодромным устройством изображено на рис. 8.2.

 

Рис. 8.2

Передаточная функция изодромного устройства равна:

где − постоянная времени изодромного устройства.

По правилам преобразования структурных схем получим:

где − коэффициент усиления разомкнутой системы.

Отсюда характеристическое уравнение замкнутой системы примет вид:

Коэффициенты этого уравнения положительны, а следовательно, за счет выбора параметров системы можно обеспечить устойчивость.

Не трудно видеть, что при (это будет при отсутствии интегратора в

изодроме ) условие устойчивости переходит в неравенство:

которое справедливо для исходной системы. При больших значениях (что соответствует малому коэффициенту ) условия устойчивости практически не изменяются, а порядок астатизма повышается на единицу.

 


 

А также другие работы, которые могут Вас заинтересовать

81427. Шапероны - класс белков, защищающий другие белки от денатурации в условиях клетки и облегчающий формирование их нативной конформации 105.78 KB
  Шаперо́ны (англ. chaperones) — класс белков, главная функция которых состоит в восстановлении правильной третичной структуры повреждённых белков, а также образование и диссоциация белковых комплексов. Термин «молекулярный шаперон» впервые был использован в работе Ласкей и других при описании ядерного белка нуклеоплазмина
81428. Многообразие белков. Глобулярные и фибриллярные белки, простые и сложные. Классификация белков по их биологическим функциям и по семействам: (сериновые протеазы, иммуноглобулины) 106.76 KB
  Глобулярные и фибриллярные белки простые и сложные. Так белки можно классифицировать: по форме молекул глобулярные или фибриллярные; по молекулярной массе низкомолекулярные высокомолекулярные и др.; по химическому строению наличие или отсутствие небелковой части; по выполняемым функциям транспортные защитные структурные белки и др.; по локализации в организме белки крови печени сердца и др.
81429. Иммуноглобулины, особенности строения, избирательность взаимодействия с антигеном. Многообразие антигенсвязывающих участков Н- и L-цепей. Классы иммуноглобулинов, особенности строения и функционирования 108.05 KB
  Домены тяжёлых цепей IgG имеют гомологичное строение с доменами лёгких цепей. Специфичность пути разрушения комплекса антигенантитело зависит от класса антител которых существует 5 типов: Ig IgD IgE IgG IgM. Созревающие Влимфоциты синтезируют мономерные бивалентные молекулы IgM по структуре похожие на рассматриваемые выше IgG которые встраиваются в плазматическую мембрану клеток и играют роль первых антигенраспознающих рецепторов. В количественном отношении IgG доминируют в крови и составляют около 75 от общего количества этих...
81430. Физико-химические свойства белков. Молекулярный вес, размеры и форма, растворимость, ионизация, гидратация 103.82 KB
  Молекулярный вес размеры и форма растворимость ионизация гидратация Индивидуальные белки различаются по своим физикохимическим свойствам: форме молекул молекулярной массе суммарному заряду молекулы соотношению полярных и неполярных групп на поверхности нативной молекулы белка растворимости белков а также степени устойчивости к воздействию денатурирующих агентов. Различия белков по молекулярной массе. Молекулярная масса белка зависит от количества аминокислотных остатков в полипептидной цепи а для олигомерных белков и от...
81431. Методы выделения индивидуальных белков: осаждение солями и органическими растворителями, гель-фильтрация, электрофорез, ионообменная и аффинная хроматография 104.42 KB
  Метод выделения белков основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щёлочноземельных металлов вызывают обратимое осаждение белков т. Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония NH42SO4.
81432. Методы количественного измерения белков. Индивидуальные особенности белкового состава органов. Изменения белкового состава органов при онтогенезе и болезнях 110.81 KB
  Индивидуальные особенности белкового состава органов. Изменения белкового состава органов при онтогенезе и болезнях. Для определения количества белка в образце используется ряд методик: Биуретовый метод один из колориметрических методов количественного определения белков в растворе.
81433. История открытия и изучения ферментов. Особенности ферментативного катализа. Специфичность действия ферментов. Зависимость скорости ферментативных реакций от температуры, рН, концентрации фермента и субстрата 143.03 KB
  Особенности ферментативного катализа. Зависимость скорости ферментативных реакций от температуры рН концентрации фермента и субстрата. Собственно ферментами от лат. Важнейшие особенности ферментативного катализа эффективность специфичность и чувствительность к регуляторным воздействиям.
81434. Классификация и номенклатура ферментов. Изоферменты. Единицы измерения активности и количества ферментов 123.9 KB
  Единицы измерения активности и количества ферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию но могут значительно различаться по степени каталитической активности по особенностям регуляции или другим свойствам. Одна международная единица активности ME соответствует такому количеству фермента которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Количество единиц активности nME определяют по формуле: В 1973 г.
81435. Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов (на примере витаминов В6, РР, В2) 115.95 KB
  Коферментные функции витаминов на примере витаминов В6 РР В2. Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы коферментах и или в ионах металлов кофакторах. В ряде случаев ион металла может способствовать присоединению кофермента.