76415

Преобразование Лапласа и его свойства

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Различают прямое и обратное преобразование Лапласа. Прямое преобразование Лапласа определяется уравнением. Обратное преобразование Лапласа определяют из решения.

Русский

2015-01-30

89.59 KB

11 чел.

Преобразование Лапласа и его свойства

В основе операторного метода расчета переходных процессов лежит преобразование Лапласа, которое позволяет перенести решение из области функций действительного переменного t в область комплексного переменного р:

При этом операции дифференцирования и интегрирования функций времени заменяются соответствующими операциями умножения и деления функций комплексного переменного на оператор р, что существенно упрощает расчет, так как сводит систему дифференциальных уравнений к системе алгебраических. В операторном методе отпадает необходимость определения постоянных интегрирования. Этими обстоятельствами объясняется широкое применение этого метода на практике.

Различают прямое и обратное преобразование Лапласа. Прямое преобразование Лапласа определяется уравнением.

где f(t) — функция действительного переменного t, определенная при t  0 (при < 0; f(t) = 0) и удовлетворяющая условиям ограниченного роста:

где множитель М и показатель роста с0 — положительные действительные числа. На рис. 7.1 изображена область определения функции комплексного переменного F(p).

Обратное преобразование Лапласа определяют из решения (7.2):

Функция F(p), определяемая уравнением (7.2), носит название изображения по Лапласу, а функция f(t) в (7.4) — оригинала. Следовательно, оригинал и изображение представляют собой пару функций действительного (t) и комплексного (p) переменного, связанных преобразованием Лапласа. Для сокращенной записи преобразований (7.2), (7.4) используют следующую символику

где L - оператор Лапласа. В дальнейшем для определенности будем использовать знак соответствия .

Рассмотрим основные свойства преобразований Лапласа.

Свойство линейности является следствием линейности преобразования Лапласа, его можно записать в форме

где ak — постоянные коэффициенты разложения. Свойство (7.5) легко доказать, если применить к левой части соотношения (7.5) прямое преобразование Лапласа (7.2).

Дифференцирование оригинала. При ненулевых начальных условиях: f(0)¹ 0 дифференцирование оригинала соответствует следующему условию

Для доказательства (7.6) подставим f¢(t) в преобразование (7.2) в виде

Отсюда после интегрирования по частям получаем:

В случае нулевых начальных условий

Интегрирование оригинала

Доказательство осуществляется путем использования свойства дифференцирования оригинала (7.6), (7.7).

Изменение масштаба независимого переменного (теорема подобия)

где а — постоянный вещественный коэффициент. Свойство (7.9) легко доказывается путем замены независимой переменной t atв прямом преобразовании Лапласа (7.2).

Смещение в области действительного переменного (теорема запаздывания):

Для доказательства (7.10) введем следующие обозначения:

Осуществим замену переменной t = ± t0.

что и требовалось доказать.

Из соотношения (7.10) следует, что сдвиг оригинала по оси времени на t0 соответствует умножению изображения на  .

Смещения в области комплексного переменного (теорема смещения):

Теорема (7.11) следует непосредственно из прямого преобразования Лапласа, если в (7.2) вместо f(t) подставить  . Причем l может быть как действительной, так и комплексной величиной.

Дифференцирование и интегрирование оригинала по параметру (свойство коммутативности):

Для доказательства свойств (7.12), (7.13) достаточно продифференцировать или проинтегрировать прямое преобразование Лапласа (7.2) по параметру х.

Произведение изображений:

Интегралы в (7.14) носят название свертки функций f1(t) и f2(t).

Дифференцирование изображения:

Свойство (7.15) легко доказывается путем дифференцирования прямого преобразования Лапласа (7.2).

Интегрирование изображения:

Данное свойство доказывается аналогично (7.15).

В заключение приведем предельные соотношения для оригинала и изображения:

Действительно, согласно свойства дифференцирования оригинала можно записать:

Учитывая, что  , получаем:

Отсюда непосредственно следует соотношение (7.17). Аналогично доказывается равенство (7.18).

В качестве примера найдем изображение по Лапласу типовых сигналов. Для теоретических и экспериментальных исследований характеристик электрических цепей и передачи сообщений по каналам связи используются различные типы сигналов: гармонические колебания, уровни постоянных напряжений, последовательность прямоугольных импульсов и так далее. Особо важную роль в теоретических исследованиях электрических цепей играют испытательные сигналы в форме единичной функции 1(t) и единичной импульсной функции d(t) (функция Дирака).

Единичная функция. Единичная функция задается уравнением (рис. 7.2, а)

Изображение функции (7.19) будет равно:

Единичная импульсная функция (функция Дирака). Эта функция называется еще d-функцией; она задается уравнением

Функция Дирака является физически нереализуемой математической абстракцией, однако обладает рядом интересных свойств и играет очень важную роль в теоретических исследованиях. Формально она может быть получена, например, предельным переходом (при t ® 0) единичного импульса (см. рис. 7.2, б), площадь которого равна единице:

Одним из интересных свойств функции d(t) является ее фильтрующее свойство, определяемое равенством (рис. 7.3):



Найдем изображение единичной импульсной функции в форме изображения разности двух единичных функций величины 1(
t), сдвинутых друг относительно друга на t (рис. 7.4). Для этих функций с учетом теоремы запаздывания имеем:

Для результирующего изображения с учетом свойства линейности получим

Устремив t ® 0, найдем изображение единичной импульсной функции (d-функции): 

Экспоненциальный сигнал  при t > 0:

т. е.


 

А также другие работы, которые могут Вас заинтересовать

21374. Назначение, технические характеристики, состав АСП Р330Б 24.08 KB
  АСП Р330Б предназначена для обнаружения пеленгования технического анализа радиоизлучений и радиоподавления прицельными помехами линий радиосвязи в тактическом звене управления противника в диапазоне частот 30100 МГц. АСП обеспечивает: автоматический поиск и обнаружение источников радиоизлучений ИРИ в пределах частотного диапазона или в заданном участке диапазона; автоматическое пеленгование обнаруженных ИРИ; отображение значений частоты и пеленга обнаруженных ИРИ на табло УУС устройство управления станцией; определение...
21375. Общее устройство и принцип работы станции Р330Б 234.16 KB
  При необходимости если есть исходные данные разведки в соответствующие ЗУ заносятся запрещённые для подавления частоты и частоты подлежащие подавлению с параметрами помехи. В УУС производится сравнение значения частоты обнаруженного ИРИ со значениями ранее записанными в ДЗУ ОЗУ и если они совпадают то РПУ продолжает перестройку. Если обнаруженный ИРИ не является объектом РЭП то значение частоты целесообразно записать в ОЗУ чтобы исключить его из анализа при повторном обнаружении. Если на частоте ИРИ планируется создание помех то...
21376. Назначение составных частей станции. Аппаратура поста оператора: устройство поисково-пеленгаторное Р – 381Т2 – 1 601.3 KB
  Вопрос№1 Назначение состав ТТХ режимы работы УПП Устройство поисковопеленгаторное Р381Т21 Т210 совместно с пеленгаторной антенной предназначено для: автоматического обнаружения и настройки на средние значения частот сигналов в диапазоне от 30 до 100 мГц; автоматического пеленгования обнаруженных сигналов; слухового приёма телефонных и телеграфных радиопередач с частотной модуляцией манипуляцией; Состав УПП Т201 – радиочастотный блок; Т202 – блок первого гетеродина; Т203 – блок синтезатора;...
21377. Назначение составных частей АСП Р330Б. Аппаратура поста оператора: устройство управления станцией УУС-3 172.13 KB
  УУС предназначено для: управления аппаратурой обнаружения Т210 при поиске ИРИ; осуществления частотной и секторной дискриминации по 3м различным признакам ДЗУ ОЗУ ЗУС; хранения информации об обнаруженных источника излучений; формирования команд по которым устройства входящие в состав станции обмениваются информацией по заданным алгоритмам в различных режимах работы станции; УУС выполняет следующие основные операции: занесение и хранение в ДЗУ ОЗУ ПЗУ до 7000 значений частот в пределах рабочего диапазона станции; ...
21378. Назначение составных частей АСП Р330Б. Аппаратура передающего тракта 128.5 KB
  Сформированный в ФМС помеховый сигнал через электронный ключ ЭК поступает на синтезаторы которые формируют выходные модулированные помеховыми напряжениями сигналы с дискретностью установки несущей частоты 1 кГц в пределах рабочего диапазона частот. Технические данные ЧЗТ обеспечивает формирование радиопомех для подавления радиолиний связи: частотной телефонии несущей модулированной шумами с параметрами: спектром по уроню 3 дБ от 025 до 15 кГц и до 2 кГц по уровню 20 дБ; с...
21379. Аппаратура передающего тракта: устройство и работа усилителя мощности ГА-210 98.49 KB
  В состав УМ входят: широкополосный транзисторный усилитель ШТУ блок ГА730; фильтр гармоник блок ГА711; три блока ламповых усилителей с распределенным усилением УРУ ГА 71801; блок согласованной нагрузки для сеточной линии блоков УРУ блок ГА724; два блока согласующих трансформаторов сопротивлений для анодной линии блоков УРУ блоки ГА732; блок защиты ламп блок ВГ723; блок питания ШТУ блок ГА708: блок питания накальных цепей ламп УРУ блок ГА706: блок питания управляющих сеток ламп УРУ блок ГА705: блок...
21380. Аппаратура передающего тракта: устройство и работа фидерного тракта ГА-230 49.71 KB
  В состав АФС Р – 330Б входят : передающая логопериодическая антенна ГА – 480; передающая ненаправленная антенна ГА – 482; приемо – пеленгаторная антенна Эдкока – Комолова Т – 251; направленная антенна РРС Р – 415В Z образная ДБ 11; ненаправленная антенна РРС ДБ12; штыревая антенна АШ – 4 р станции Р – 173; штыревая антенна АШ – 4 УПП Т – 210. Передающая логопериодическая антенна ГА – 480 предназначена для излучения р сигнала помехи в пространство с вертикальной поляризацией и используется при работе АСП на стоянке....
21381. Система электропитания станции. Средства связи 619.06 KB
  Наименование Назначение Приёмопередатчик: В него входят: Блок 3 Блок 4М Блок 7 Блок 9 Блок 10 Блок 11 Блок 12М Блок 13 Монтажный комплект антенного устройства Комплект запасных частей Кабель ВЧ Кабель НЧ Эксплуатационная документация Блок приёма Синтезатор частот Запоминающее устройство Перестраиваемый фильтр Усилитель мощности Антенносогласующее устройство Возбудитель Блок питания Устройство и работа радиостанции и её составных частей Структурная схема радиостанции Структурная схема радиостанции приведена на...
21382. Назначение, состав, тактико-технические характеристики АСП Р-934У 19.15 KB
  Диапазон рабочих частот 100000 – 399999 МГц. Станция в режиме ПОИСК позволяет производить: ручное обнаружение сигналов с любым видом модуляции во диапазоне частот; автоматическое обнаружение и сортировку сигналов по заранее заданному виду модуляции НС во всем диапазоне; визуальнослуховой анализ обнаруженных сигналов; ручное включение и выключение помехи на любой сигнал; автоматическое включение и выключение помехи на частоте обнаруженного сигнала для которого совпадает заданный вид модуляции с...