76417

Дифференциальные уравнения и передаточные функции

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Введем понятие звена автоматической системы. При математическом описании системы удобно разбить систему на звенья и для каждого звена записать свое уравнение. Уравнение такого звена связывает две величины: x входная величина или воздействие и y выходная величина или реакция. Пусть момент времени t=0 выбран так что начальные условия на выходе звена являются нулевыми.

Русский

2015-01-30

38.88 KB

30 чел.

3.    Дифференциальные уравнения и передаточные функции.

 

Введем понятие звена автоматической системы.

При математическом описании системы удобно разбить систему на звенья и для каждого звена записать свое уравнение. Таким образом, звено – это часть системы, описываемая одним уравнением. Как одно звено могут быть рассмотрены отдельные элементы системы, совокупности элементов (подсистемы), а также вся система. Также могут использоваться абстрактные звенья, не имеющие прямого соответствия с реальными элементами системы. Для одной системы существует бесконечное множество способов разбиения на звенья (должен быть выбран самый удобный для конкретной задачи).

 

Структурной схемой называют наглядное изображение математической модели системы. На структурной схеме каждое звено показывается в виде блока, а связи между блоками показываются стрелками.

 

Рассмотрим линейное звено с одним входом и одним выходом.

 

 

 

 

 


Уравнение такого звена связывает две величины: x (входная величина или воздействие) и y (выходная величина или реакция). По своему смыслу входная величина является причиной, а выходная – следствием.

 

Линейное звено описывается дифференциальным уравнением вида:

где n и m – целые неотрицательные числа, a0 …anb0bm – постоянные коэффициенты.

 

Пусть момент времени t=0 выбран так, что начальные условия на выходе звена являются нулевыми.

y(0)=0, y(1)(0)=0 ,…, y(n–1)(0)=0.

 

Выполним преобразование Лапласа от левой и правой частей дифференциального уравнения звена. При этом используем свойство дифференцирования оригинала при нулевых начальных условиях (см. 1.1).

 

Вместо дифференциального получаем алгебраическое уравнение, где присутствуют уже не функции времени, а изображения входной и выходной величин X(p) и Y(p). Переменная p – это комплексная переменная, заменяющая время в результате преобразования Лапласа.

 

Дадим следующее определение передаточной функции:

Передаточная функция (ПФ) звена – это отношение изображения выходной величины звена к изображению его входной величины при нулевых начальных условиях. Выразим это отношение, обозначив ПФ буквой W.

, откуда .

 

Передаточная функция является дробно-рациональной функцией переменной (р – это переменная, она не имеет конкретного значения). Смысл ПФ – это комплексный коэффициент усиления (передачи) звена при рассмотрении на его входе и выходе изображений величин по Лапласу.

 

По виду передаточной функции различают идеальные и реальные звенья.

У реальных звеньев порядок числителя передаточной функции не превышает порядка знаменателя: mn. У идеальных звеньев порядок числителя передаточной функции больше порядка знаменателя: m>n.

 

Особенностью идеальных звеньев является то, что эти звенья могут на ограниченные по величине воздействия давать бесконечно большие реакции. Поэтому, идеальное звено нельзя поставить в соответствие с реальным элементом системы. Такие звенья называют также физически нереализуемыми. Реальные элементы систем всегда описываются реальными звеньями.

 

Приведем примеры:

 – реальное звено (m=0, n=1),  – идеальное звено (m=2, n=1).

 

Передаточную функцию можно преобразовать к следующему виду:

,

где z1,z2 …zm – постоянные числа, называемые нулями передаточной функции,  p1,p2 …pn – постоянные числа, называемые полюсами передаточной функции, K – постоянный множитель. Подстановка p=zi обращает передаточную функцию в ноль. Подстановка p=pi обращает передаточную функцию в бесконечность. Нули и полюсы в общем случае являются комплексными числами.

 

На структурной схеме передаточную функцию записывают внутри блока, изображающего звено (в символическом или в полном виде). На входе и на выходе звена допустимо показывать как функции времени, так и изображения по Лапласу:

 

 

 

 Рассмотрим понятия статического и динамического звена.

 

Динамическое звено описывается дифференциальным уравнением. Выходная величина динамического звена в каждый момент времени зависит не только от значения входной величины в данный момент времени, но и от ее значений в предыдущие моменты времени.

 

Статическое звено описывается алгебраическим уравнением (не содержит производных). Выходная величина статического звена в каждый момент времени зависит только от значения входной величины в данный момент времени.

 

Статическое линейное звено называется пропорциональным звеном и описывается уравнением вида:

y(t)=K·x(t),

где К – коэффициент передачи пропорционального звена.

 

При переходе к изображениям вид уравнения пропорционального звена не изменяется Y(p)=K·X(p). ПФ пропорционального звена W(p)=K не зависит от переменной p. ПФ динамического звена всегда зависит от переменной р.

 

Рассмотрим понятие статической характеристики динамического звена.

Статической характеристикой динамического звена называется зависимость выходной величины звена от его входной величины в статическом режиме, т.е. при постоянстве во времени входной и выходной величин.

 

Условие статического режима:

x =xст = const

 

Для получения уравнения статической характеристики необходимо приравнять к нулю все производные в дифференциальном уравнении звена. В результате можно прийти к алгебраическому уравнению вида

yст = Kст·xст,

где Кст – статический коэффициент передачи звена (Kст = const).

 

График статической характеристики линейного звена – прямая линия, проходящая через начало координат:

 

 

 

 

 

 

 

 

 


Если известна ПФ звена, то статический коэффициент передачи можно получить путем подстановки p=0.

Kст = W(0).

 


 

А также другие работы, которые могут Вас заинтересовать

6592. Наука и ее роль в жизни общества. Функции, особенности и методы научного познания 29.91 KB
  Наука и ее роль в жизни общества Функции, особенности и методы научного познания. Стадии и уровни научного познания. НТР и моральные проблемы. Наука - это особая сфера человеческой деятельности, направленная на добывание, осмысление, системати...
6593. Человек и общество. Общество как процесс. Человек и история. 36.58 KB
  Человек и общество. Общество как система. Общество как процесс. Человек и история. Общество - система деятельности и жизни людей, объединенных территорией проживания, эпохой, историей, традициями и культурой. Основное предназначение обще...
6594. Духовная жизнь общества. Общественное сознание 30.87 KB
  Духовная жизнь общества. Общественное сознание. Основные формы духовной жизни общества. Общественное сознание и его формы. Основными формами духовной жизни общества принято считать мораль, право, религию, науку, искусство. Мораль - это...
6595. Человек и культура. Культура и цивилизация 33.62 KB
  Человек и культура. Культура и цивилизация. Структура культуры. Функции культуры. Культура и цивилизация. Культура делится на различные типы, виды, формы. Внутренняя структура культуры содержит два слоя: материальную и духовную культ...
6596. Человек и религия. Понятие, формы и функции религии. Мировые религии 39.4 KB
  Человек и религия Понятие, формы и функции религии. Мировые религии. Религия (religio - святость, благочестие) - совокупность представлений, мировоззрение и мироощущение определяемое верой в существование Бога, богов. Содержание ре...
6597. Словарь терминов по философии 48.88 KB
  Словарь терминов по философии Абсолют (от лат. absolutus - безусловный, неограниченный) - в философии и религии безусловное, совершенное начало бытия, свободное от каких либо условий (Бог, абсолютная личность). Абстракция (от лат. abstract...
6598. Авиационный двигатель и его производство 109.88 KB
  Авиационный двигатель и его производство Мировой опыт развития авиационного производства свидетельствует, что изготовление авиационных двигателей является наукоемким производством (НП). Авиадвигателестроение является одной из наиболее наукоемких отр...
6599. Характеристика наукоемкого производства. Характеристика наукоемкого производства авиационных двигателей 118.06 KB
  Характеристика наукоемкого производства Характеристика наукоемкого производства авиационных двигателей Изготовление наукоемкого объекта, имеющего высокие эксплуатационные параметры, очевидно, может быть осуществлено только в условиях наукоемкого про...
6600. Наукоемкие технологии производства. Характеристика наукоемких технологий 209.06 KB
  Наукоемкие технологии производства Характеристика наукоемких технологий Наукоемкое производство опирается на наукоемкие технологические процессы на всех стадиях производства. Процесс создания наукоемких технологий (НТ) является комплексным, охватыва...