76419

Типовые динамические звенья

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Преобразуемая физическая величина поступающая на вход динамического звена называется входной х а преобразованная величина получаемая на выходе звена выходнойy. Статической характеристикой звена называется зависимость между его выходной и входной величинами в установившемся состоянии. Динамические свойства звена могут быть определены на основании дифференциального уравнения описывающего поведение звена в переходном режиме. Решение дифференциального уравнения дает возможность получить переходную или иначе временную характеристику...

Русский

2015-01-30

34.53 KB

8 чел.

Типовые динамические звенья.

Характер переходного процесса в системе автоматического управления зависит от динамических свойств элементов, из которых она состоит. В зависимости от области применения САУ эти элементы могут быть разными по назначению, конструктивному исполнению, принципу работы и т.д. Они могут выполнятся в виде машин, аппаратов, приборов и устройств различного действия (механического, электрического, пневматического, гидравлического и т.д.).

Однако все эти элементы независимо от их назначения и конструктивного исполнения подразделяются на ограниченное число звеньев, обладающих одинаковыми динамическими свойствами и называемых типовыми динамическими звеньями.

Каждое динамическое звено представляет элемент направленного действия. Это значит, что преобразование одних физических величин в другие в нем происходит в одном определенном направлении (например, от входа к выходу элемента).

Преобразуемая физическая величина, поступающая на вход динамического звена, называется входной (х), а преобразованная величина, получаемая на выходе звена, -выходной(y).

Статической характеристикой звена называется зависимость между его выходной и входной величинами в установившемся состоянии. Динамические звенья бывают линейные и нелинейные. Статические характеристики линейных звеньев могут быть представлены в виде линейной функции y=f(x) аналитически либо графически, а нелинейных звеньев - преимущественно графически.

Динамические свойства звена могут быть определены на основании дифференциального уравнения, описывающего поведение звена в переходном режиме. Решение дифференциального уравнения дает возможность получить переходную (или, иначе, временную) характеристику динамического звена, представляющую зависимость выходной величины от времени при определенном изменении во времени входного воздействия.

Все типовые звенья можно разделить на три группы: позиционные, интегрирующие и дифференциальные. Каждая из групп в свою очередь содержит несколько типовых звеньев (таблица 7.1.).

 

Тип звена

Передаточная функция и операторное уравнение

Соответствие реальному объекту

Позиционные

Безинерционное (усилительное, пропорциональное, идеальное).  

  

Потенциометр, рычаг и т.д.

Апериодическое 1-го порядка (инерционное)

   

RL и RC контуры, генератор постоянного тока, термистор и т.д.

Апериодическое 2-го порядка

 )

Двигатель постоянного тока с независимым возбуждением при уравнении в цепи якоря.

Колебательное

 ;

RLC контур, рамка в магнитном поле, 3-х степенной гироскоп.

Консервативное

 

LC- контур

Интегрирующие

Интегрирующее идеальное

Операционный усилитель

Интегрирующее с запаздыванием

 

Гидравлический демпфер, амортизатор.

Изодромное

 

Демпфер с пружиной

Дифференцирующие

Дифференцирующее идеальное

 ; 

Двухстепенной гироскоп

Дифференцирующее с замедлением (реальное)

 

Стабилизирующие трансформаторы, емкостные дифференцирующие контуры, дифференцирующие мостовые схемы, RC- цепь


 

А также другие работы, которые могут Вас заинтересовать

21185. Векторний та змішаний добутки векторів. Площина та пряма в просторі 522 KB
  У множині геометричних векторів можна ввести так званий векторний добуток двох векторів коли кожній парі векторів співставляється третій вектор який і називається їх добутком: . Вектор направлений перпендикулярно площині в якій лежать вектори і і в таку сторону щоб трійка векторів складала праву трійку інакше кажучи щоб ці вектори були орієнтовані по правилу правої руки Рис.1 Векторний добуток векторів Довжина вектора визначається за формулою 15.
21186. Лінійні оператори. Матриця оператора 476.5 KB
  Лінійні оператори. Матриця оператора. Лінійні оператори.
21187. Власні числа та власні вектори оператора. Самоспряжені оператори 822 KB
  1 то він називається власним вектором оператора а число його власним числом. Таким чином дія оператора на власний вектор дає той же вектор помножений на власне число. Це алгебраїчне рівняння степені називається характеристичним рівнянням оператора .
21188. Ортогональні оператори. Квадратичні формию. Криві другого порядку 282 KB
  2 то одержимо друге означення ортогонального оператора або .3 Звідси маємо для матриці ортогонального оператора або 18.5 показує що рядки стовпці матриці ортогонального оператора ортогональні.1 витікають властивості ортогонального оператора: 1 Якщо ортогональний то і ортогональні.
21189. Криві другого порядку 454.5 KB
  Як було показано в попередній лекції загальне рівняння другого порядку в системі координат побудованій на власних векторах матриці квадратичної форми рівняння має вид 18.1 Спочатку розглянемо випадок коли це рівняння еліптичного або гіперболічного типу тобто . Якщо то рівняння 19. Якщо маємо два рівняння прямих що проходять через новий початок координат .
21190. Поверхні другого порядку 575 KB
  Розглянемо більш загальне рівняння яке містить в собі і квадратичний вираз на предмет того який геометричний обєкт воно описує.1 перетвориться у рівняння 20. В новій системі координат рівняння 20. Перепишемо рівняння 20.
21191. Матриці. Лінійні дії з матрицями. Поняття лінійного простору 207 KB
  Лінійні дії з матрицями. Вона характеризується таблицею чисел яку можна записати окремо і розглядати як суцільний обєкт що має назву матриця лат.2 Очевидно що матриця є узагальненням як числа так і вектора. Дійсно при m=1 n=1 матриця зводиться до числа при m=1 n=3 вона є векторрядок а при m=3 n=1 векторстовпець.
21192. Множення матриць. Поняття детермінанта 255.5 KB
  Множення матриць. Розглянемо якісно нову відмінну від введених в попередній лекції операцій а саме нелінійну операцію множення матриць. Визначити операцію множення матриць це означає вказати яким чином даній парі матриць ставиться у відповідність третя матриця яка і буде їх добутком.
21193. Властивості детермінантів 220.5 KB
  Детермінант транспонованої матриці дорівнює детермінанту даної. З очевидної рівності випливає що детермінант можна записати також у вигляді == =.2 Після транспонування одержимо детермінант в добутках якого індекси множників помінялись місцями.