76652

Волновое мультиплексирование. Элементы WDM систем

Практическая работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Интенсивные пики рассеяния наблюдаются тогда когда выполняется условие Вульфа Брэгга kG = G2 2 4 где k волновой вектор G вектор обратной решётки то есть при условии что рассеянная волна совпадает по фазе с падающей. Это соотношение называется условием Вульфа Брэгга. Решетки Брэгга и волоконно-оптические решетки Брэгга FBG На рисунке 7 приведена модель которую мы будем использовать для описания принципа работы дифракционной решетки Брэгга. Решетка Брэгга является...

Русский

2015-01-30

308.75 KB

7 чел.

Практическое занятие 3 – Волновое мультиплексирование. Элементы WDM систем

Интерферометр Фабри-Перо и фильтры на его основе; интерферометр Фабри-Перо; фильтры на основе решеток Брегга.

Интерферометр Фабри-Перо

Интерферометр  Фабри—Перо  (Ф—П)  является  устройством интерференционного  типа,  основанным  на  многократном  отражении светового луча от двух поверхностей тонких пластин. Его принцип действия показан на рисунке 1. Существует интерференционный максимум для каждой длины волны, который математически выражается следующим образом:

= 2d cosα                                                                  (1)

где m — целое число, d — расстояние между пластинами, α – угол падения луча.

Интерферометр  использует  многократные  отражения  между  двумя близко  расположенными  частично  посеребренными  поверхностями (рисунки 1 и 2).  Часть света проходит, а часть отражается каждый раз, когда свет достигает второй поверхности,  образуя  в  результате много  смещенных  лучей,  которые могут интерферировать друг с другом. Определение разности хода лучей показано на рисунке 3. Большое количество интерферирующих лучей создает интерферометр с исключительно высоким разрешением. Это напоминает множество щелей (шлицев) дифракционной решетки, которое увеличивает ее разрешение.

Рисунок 1 - Принцип действия интерферометра Фабри-Перо

 

Рисунок 2 – Конструкция интерферометра Фабри-Перо

 

Рисунок 3 – Пояснение работы интерферометра Фабри-Перо

Резонатор Фабри-Перо -  устройство,  полученное  из  интерферометра Ф-П. Он представляет  собой две параллельные пластины, отражающие  свет вперед и назад. Степень дисперсности (тонкость структуры линий) является показателем  того, как много волновых каналов могут одновременно пройти без серьезной интерференции между ними. Она является мерой энергии волн внутри резонансной полости относительно энергии, потерянной за цикл. Чем больше степень дисперсности, тем уже ширина резонансной линии. Степень дисперсности может рассматриваться как эквивалент понятия добротности Q электрических фильтров.

На  основе  интерферометра  Ф—П  можно  создать  оптический  фильтр.  Настройка  фильтра  осуществляется  путем  изменения ширины зазора  между  двумя  зеркалами.  При  более  сложной  конструкции интерферометра  Ф—П,  вся  структура  целиком  помещается  в пьезоэлектрическую  камеру  так,  что  указанная  ширина  зазора  может  быть изменена  электрически  для  настройки  и  выбора  определенного  канала.

Преимущества  фильтров  Фабри—Перо  в  том,  что  они  могут  быть интегрированы  в  систему  без  возникновения  потерь  на  стыковку.  Число каналов  ограничивается 50-100,  учитывая  ограниченную  степень дисперсности  практического  фильтра  Ф—П (F = 100  для 97%  зеркала  в тандеме, что увеличивает эффективную степень дисперсности до F ~ 1000).

На  рисунке 4  приведена  схема  конструкции  практического  фильтра  Ф—П.

Рисунок 4 - Схема конструкции практического фильтра Ф-П

Фильтры Маха-Цендера

Интерферометр Маха—Цендера  (М—Ц) можно  сделать  путем  соединения двух выходных портов 3-дБ разветвителя к двум входным портам другого 3-дБ разветвителя, как показано на рисунке 5. Первый разветвитель расщепляет оптический  сигнал  на  два  равных  потока,  где  каждый  поток  приобретает различные фазы (когда длины ветвей разветвителя оказываются различными до  того,  как  во  втором  разветвителе  произойдет  интерференция  одного расщепленного сигнала с другим).

Рисунок 5 - Оптический интерферометр Маха—Цандера

Относительная  фаза  зависит  от  длины  волны  и  коэффициента пропускания  T (ν),  который  тоже  зависит  от  длины  волны. Он  может  быть вычислен по формуле:

T (ν) = cos2(πντm)                                                  (2)

где  τm—  относительная  задержка между  двумя  ветвями интерферометра,

ν —  частота.  

Цепочка  каскадов  таких  интерферометров  М—Ц  с определенным  образом  настроенными  задержками  работает  как  оптический фильтр,  который  может  быть  настроен  путем  небольшой  подстройки  длин ветвей.

Общие  методы,  используемые  для расчета  относительной  задержки  τm,  реализуются  так,  что  каждый  М—Ц каскад  последовательно  блокирует  альтернативные  каналы.  Эта  схема требует,  чтобы выполнялось условие

τm = (2mΔνch)-1                                                    (3)

для  шага  между  каналами,  равного  Δνch.

Результирующий коэффициент передачи 10-каскадного фильтра имеет такую же  избирательность,  какая  эквивалентна  избирательности  фильтра  Ф-П, имеющего  степень  дисперсности 1600.  Эта  каскадная  схема  способна выделять  близко  стоящие  каналы.  Каскадное  включение  интерферометров М-Ц  дает  проектировщику  систем WDM  еще  одну  заслуживающую внимания технологию.

Фильтры на основе решеток Брегга

Брэгговская дифракция — явление сильного рассеяния волн на периодической решётке рассеивателей при определенных углах падения и длинах волн.

Простейший случай Брэгговской дифракции возникает при рассеянии света на дифракционной решётке. Аналогичное явление наблюдается при рассеянии рентгеновского излучения, электронов, нейтронов и т. п. на кристаллической решётке. Интенсивные пики рассеяния наблюдаются тогда, когда выполняется условие Вульфа — Брэгга

kG = G2/2,                                                       (4)

где k — волновой вектор, G — вектор обратной решётки, то есть, при условии, что рассеянная волна совпадает по фазе с падающей. Для дифракционной решетки с периодом d  (рисунок 6) это условие можно переписать в виде:

2dsinθ = ,                                                      (5)

где θ угол скольжения — дополнительный угол к углу падения, λ — длина волны, n (n = 1,2…) — целое число называемое порядком дифракции. Это соотношение называется условием Вульфа — Брэгга.

Рисунок 6 – Пояснение условия Вульфа-Брегга

Брэгговская дифракция получила свое название в честь отца и сына Бреггов (Брэгг, Уильям Генри и Брэгг, Уильям Лоренс), которые открыли дифракцию рентгеновских лучей на кристаллах в 1913 году. В 1915 году отец и сын получили Нобелевскую премию по физике за это открытие.

Решетки Брэгга и волоконно-оптические решетки Брэгга (FBG)

На  рисунке 7  приведена  модель,  которую  мы  будем  использовать  для описания принципа работы дифракционной решетки Брэгга. Решетка Брэгга является последовательностью полуотражающих параллельных пластин. Эти пластины отделены одна от другой на расстояние d. Свет, состоящий из нескольких или большого числа длин волн, входит с левой стороны. В зависимости от расстояния d будет наблюдаться отражение одной или нескольких длин волн. Этот отраженный свет выходит также с левой стороны, тогда как остальная группа длин волн света выйдет с правой стороны. Условия точного отражения длин волн, или условия Брэгга таковы:

d =  nλB/2                                                         (6)

где  n —  произвольное  число,  а  λB -  длина  волны  отраженного  канала;  d - представляет  собой шаг, или период брэгговской решетки, который должен быть целым кратным половины длины волны. Отрицательный знак означает отражение,  а  n —  означает  порядок  решетки  Брэгга.  Когда  n =  1 (первый порядок),  имеем  d =  λB/2,  а  при  n =  2 (второй  порядок),  имеем  d  =  λB.

Решетка Брэгга дает возможность получить прекрасный полосовой фильтр.

Рисунок 7 - Модель дифракционной решетки Брэгга

Волоконная  решетка  Брэгга  (FBG)  состоит  из  отрезка  оптического волокна,  показатель  преломления  которого  периодически  изменяется  по длине  волокна (Рисунок 8). Эти  изменения  показателя  преломления  моделируют структуру  решетки  Брэгга. Общий метод  изготовления FBG  состоит  в  том, что  волокно  подвергается  интенсивному  ультрафиолетовому  облучению через шаблон, который имеет период, равный периоду решетки, подлежащей изготовлению.  Когда  германий-силикатная  сердцевина  волокна экспонируется  интенсивным  светом,  прошедшим  через  шаблон,  в  ней формируются структурные дефекты и, следовательно, возникают постоянные изменения показателя преломления. Они имеют ту же периодичность, что и облучаемый ультрафиолетом шаблон.

Рисунок 8 - Иллюстративная модель волоконной решетки Брэгга. Для окна 1550 нм, d может быть в диапазоне от 1 до 10 мкм.

Другой  метод  формирования  отражательной  решетки  Брэгга  основан на  многослойной (стековой)  диэлектрической  структуре,  составленной  из слоев  толщиной  λ/4.  Она  известна  как  фотонная  решетка,  каждая  с различным  коэффициентом  преломления.  Такие  решетки  отражают  длины волн для всех возможных углов падения, причем они не поглощают энергию падающего луча, как это делают отражатели на зеркалах.

FBG  широко  используются  вместе  с  оптическими  циркуляторами, обычно  в  оптических  мультиплексорах  ввода-вывода (OADM),  где FBG обратно  отражает  только  те  длины  волн,  для  которых  она  была спроектирована. Остальная часть агрегатного потока длин волн может после этого быть передана другой комбинации циркулятору-FBG , для того, чтобы выделить другую длину волны, и т. д. Этот принцип показан на рисунке 9. FBG могут  быть  использованы  как  полосовые  фильтры,  интерференционные фильтры,  компенсаторы  хроматической  дисперсии,  а  также  для выравнивания выходной характеристики усилителей EDFA.

Рисунок 9 - Комбинация: циркулятор-решетка FBG выделяет канал с одной несущей из агрегатного канала, за которым следует аналогичная комбинация, выделяющая другой канал. FBG - волоконная решетка Брэгга

FBG  чувствительны  к  изменению  температуры,  независимо  от  периодичности  или ширины  полосы. Их  обычно  размещают  в  специальных  термостатах.

В таблице 1 приведены типовые параметры и характеристики промышленно  выпускаемых FBG.  В  конфигурациях DWDM  предметом  особой  заботы  является перекрестная помеха. На  рисунке 10 приведена  типичная  характеристика полосового фильтра демультиплексора. При шаге в 50 ГГц помеха от соседнего канала подавляется примерно на 30 дБ.

Таблица 1  Спецификация полосового фильтра на волоконной решетке Брэгга

Характеристика

Тип А (100 ГГц)

Тип А (50 ГГц)

Тип В

Тип С

Применение

Фильтр WDM

Фильтр WDM

Внешн. резонатор

Подавление ASE

Диапазон  λ, нм     

1530-1560

1530-1560

980; 1310; 1480; 1550

1525-1545

Точность  λ, нм

± 0,05

± 0,05

± 0,05

± 0,05

Отражательная

способность                 

≥ 99%

≥ 99%

от 1 до 99%

Δλ, нм

0,6 нм, FWHM

0,3 нм,  FWHM

0,6 нм, FWHM

≥10дБ

Подавление  

перекрестной  

помехи при  

передаче, дБ                 

≥ 30

≥ 30

≥ 30

≥ 30

Подавление  

перекрестной  

помехи при  

отражении, дБ              

≥ 30

≥ 30

≥ 30

≥ 30

Рисунок 10 - Характеристики полосового фильтра на дифракционной решетке Брэгга. (Sumitomo Electric Lightwave Corp.)


 

А также другие работы, которые могут Вас заинтересовать

26260. Особенности проектирования защиты растений в агроценозах и перспективы ее экологизации 63.5 KB
  Лекция Особенности проектирования защиты растений в агроценозах и перспективы ее экологизации Цели и задачи. Проектирование защиты растений в агротехнологиях различных уровней интенсификации. Принципы и возможности экологизации защиты растений. Проектирование защиты растений в агротехнологиях различных уровней интенсификации Проектирование систем защиты осуществляется на основе определения видового состава вредных организмов в рамках агроэкологической группы земель и их потенциальной вредоносности которая устанавливается с помощью...
26261. Особенности проектирования обработки почвы под основные культуры в связи с различными агроэкологическими условиями 99 KB
  Практическое занятие Особенности проектирования обработки почвы под основные культуры в связи с различными агроэкологическими условиями Цели и задачи Сформировать представление о современных системах обработки почвы в севооборотах и основных направлениях ее совершенствования. Рассматриваются особенности обработки почвы в различных агроэкологических условиях в соответствии с требованиями сельскохозяйственных культур. Ключевые слова: оптимальная и равновесная плотность почвы отвальная плоскорезная чизельная комбинированная основная...
26262. Оценка агроклиматических условий 285.5 KB
  Температура воздуха почвы и растения всегда зависит от количества солнечной радиации. В зависимости от длительности промерзания почвы и ее среднегодовой температуры выделяются четыре типа температурного режима почв: мерзлотный характерен для районов вечной мерзлоты среднегодовая температура почвы отрицательная; длительно сезонно промерзающий с длительностью промерзания не менее 5 месяцев среднегодовая температура почвы положительная глубина проникновения отрицательных температур более 2 м; сезонно промерзающий с длительностью...
26263. Подготовка семян к посеву 609.5 KB
  Домашнее задание Подготовка семян к посеву Цели и задачи. Освоить систему подготовки семян к посеву приобрести навыки сортировки калибровки и обработки семян различными препаратами и физическими средствами стимуляции. Аннотация Рассматриваются различные виды подготовки семян к посеву: сортировка калибровка тепловой обогрев протравливание инкрустация дражирование скарификция стратификация и др. Приводятся нормативные требования к качеству семян.
26264. Расчет потребности в элементах питания на планируемую урожайность 109 KB
  Развить умение рассчитывать дозы минеральных и органических удобрений на планируемую урожайность с использованием различных методов. Рассматриваются три группы способов расчета доз удобрений под планируемую урожайность: нормативные балансовые и статистические. Ключевые слова: нормативы затрат удобрений вынос элементов коэффициент использования запасы потери газообразные вымывание прибавка урожая балансовые коэффициенты нормативы расхода поступление. Нормативный метод расчета доз удобрений на планируемую урожайность.
26265. Выбор культуры и сорта 1.09 MB
  Менее требовательны к плодородию почвы культуры отличающиеся хорошо развитой корневой системой или повышенной усвояющей способностью корней рожь сорго овес нут чина пелюшка люпин желтый и синий сераделла гречиха и др. Легкие песчаные и супесчаные удобренные почвы можно использовать для возделывания озимой ржи овса песчаного сорго картофеля турнепса арбуза дыни сераделлы эспарцета песчаного люцерны желтой и житняка. Среднесуглинистые почвы больше подходят для овса проса сорго гречихи ячменя подсолнечника сои фасоли...
26266. Задачи и принципы построения агроэкологической оценки земель 30 KB
  Лекция: Задачи и принципы построения агроэкологической оценки земель Цели и задачи. Обосновать построение системы агроэкологической оценки земель исходя из агроэкологических требований сельскохозяйственных культур адаптивных технологий их возделывания для проектирования адаптивноландшафтных систем земледелия. Обосновать необходимость совершенствования системы агроэкологической оценки земель с позиций новых требований экологизации земледелия. Ключевые слова: адаптивноландшафтное земледелие агропроизводственная группировка почв...
26267. Понятийный аппарат агротехнологий и их классификация 86.5 KB
  Усвоение базовых понятий агротехнологий их классификации и места в адаптивноландшафтных системах земледелия. Агротехнологии рассматриваются как составная часть адаптивноландшафтных систем земледелия. Агротехнологии как составная часть адаптивноландшафтных систем земледелия. Классификация агротехнологий как составная часть адаптивноландшафтных систем земледелия Современные агротехнологии представляют собой комплексы технологических операций по управлению продукционным процессом сельскохозяйственных культур в агроценозах с целью достижения...
26268. Контроль сорной растительности в агроценозах 233.5 KB
  Рассматриваются наиболее типичные условия засоренности агроценозов экономические пороги вредоностности сорняков предупредительные и истребительные методы контроля сорняков в том числе агротехнические биологические и химические. Контроль сорной растительности в агроценозах Среди всех агрономических проблем одна из самых сложных – контроль сорняков причем при снижении интенсивности обработки почвы она обостряется. Методы контроля сорняков подразделяются на предупредительные и истребительные. Предупредительные методы контроля сорняков Они...