76668

Главные схемы ТЭЦ

Реферат

Энергетика

Таким образом первой особенностью главной схемы ТЭЦ является наличие во многих случаях сборных шин генераторного напряжения к которым присоединяются генераторы ТЭЦ и кабельные линии 6 10 кВ питающие местный район электрической нагрузки.

Русский

2015-01-31

43.62 KB

13 чел.

Особенности главных схем теплоэлектроцентралей - Электрическая часть электростанций

ТЭЦ обычно располагают в центре тепловой нагрузки, которой сопутствует большое потребление электрической энергии. Поэтому, чтобы избежать двойной трансформации, выгодно всю электрическую энергию, вырабатываемую ТЭЦ, или значительную ее часть передавать местным потребителям на генераторном напряжении.

Таким образом, первой особенностью главной схемы ТЭЦ является наличие во многих случаях сборных шин генераторного напряжения, к которым присоединяются генераторы ТЭЦ и кабельные линии 6—10 кВ, питающие местный район электрической нагрузки.

Вторая особенность заключается в неравенстве мощности генераторов и трансформаторов связи станции с системой. С одной стороны, мощность трансформаторов должна быть достаточной для передачи в систему избыточной мощности ТЭЦ при максимальном тепловом потреблении и минимальной электрической нагрузке района; с другой стороны, должно быть обеспечено питание района от системы при максимальной электрической нагрузке и минимальном тепловом потреблении. Рекомендуется для этого режима учитывать выход из работы наиболее мощного генератора ТЭЦ (авария, ремонт).

Ввиду частого реверса мощности и различных требований к регулированию напряжения на шинах системы и генераторных шинах трансформаторы ТЭЦ должны во всех случаях иметь устройства регулирования напряжения под нагрузкой (РПН).

При необходимости питания нагрузки не только на генераторном, но и на промежуточном напряжении (35 кВ при связи с системой на 110 кВ или 110 кВ при напряжении системы 220 кВ) выгодней устанавливать трехобмоточные трансформаторы при мощности, отдаваемой на одном из напряжений, не меньшей 15 % мощности на другом напряжении. Если эта мощность менее 15 %, устанавливаются два двухобмоточных трансформатора с присоединением их к генераторным шинам через один выключатель. При этом экономится ячейка выключателя генераторного напряжения, а на среднем напряжении (35 или 110 кВ) может быть установлено более легкое и дешевое оборудование, чем это потребовалось бы при трехобмоточном трансформаторе, мощность любой из обмоток которого составляет на менее 67 % номинальной мощности трансформатора.

Рис. 2-12. Схема ТЭЦ с двумя системами шин

Следующей отличительной чертой главных схем ТЭЦ является секционирование и реактирование сборных шин генераторного напряжения, а также установка реакторов в отходящих фидерах для ограничения токов короткого замыкания на шинах станции и в сети потребителя. Число секций обычно равно числу генераторов, причем в схеме с двумя системами шин резервная система шин не секционируется, а связь ее с секциями рабочей системы осуществляется или через реакторы или через междушинные выключатели (рис. 2-12). В схеме с одной системой шин, которая является типовой и рекомендуется как предпочтительная, реакторы могут быть шунтированы и секции окажутся соединенными только через секционные выключатели (рис. 2-13). Шунтирование реакторов уменьшает потери в схеме и возможно в периоды, когда по условиям нагрузки работает только часть генераторов станции.

Индуктивное сопротивление секционных реакторов обычно выбирается таким, чтобы на него приходилось 10—12 % номинального напряжения, а их номинальный ток составлял 70 % номинального тока генератора, подключенного к секции. При этом обеспечивается поддержание остаточного напряжения на неповрежденных секциях в пределах 75—80 % номинального при коротких замыканиях на соседней с реактором секции. При мощности генераторов 60—100 МВт ударный ток на сборных шинах составляет 230—300 кА и динамическая стойкость шин должна соответствовать этому току.

Рис. 2-13. Типовая схема ТЭЦ (штриховыми линиями показано кольцевание схемы)

Фидерные реакторы выбираются из расчета ограничения тока короткого замыкания в сети значением 20 кА. Этому условию удовлетворяют реакторы 6 кВ с реактивным сопротивлением

5 % на каждые 100 А номинального тока и реакторы 10 кВ с сопротивлением 0,4 % на каждые 100 А.

Для экономии места и уменьшения стоимости РУ, а также для улучшения регулирования напряжения в фидерах устанавливают групповые сдвоенные реакторы (рис. 2-13).

Надежность и маневренность схемы генераторного напряжения ТЭЦ повышается при замыкании ее в кольцо (рис. 2-13), однако в ней не предусматривается вывода выключателей в ремонт без перерыва питания потребителей. Такая возможность появляется только при наличии резервного питания потребителей по сети.

В современных условиях появился ряд новых обстоятельств, которые существенно влияют на выбор глазных схем ТЭЦ, приближая их к главным схемам конденсационных станций. Это, во-первых, значительное удаление ТЭЦ от центров потребления теплоты и электроэнергии, что вызвано ужесточением норм по охране окружающей среды, исчерпанием площадок для размещения ТЭЦ вблизи нагрузки и переходом на этих станциях с газа и мазута на уголь.

Во-вторых, это укрупнение отдельных агрегатов и увеличение единичной мощности ТЭЦ. При этом повышение номинальных напряжений укрупненных генераторов (15,75; 18 и 20 кВ) и более экономичные схемы электроснабжения близлежащих потребителей электроэнергии через подстанции глубокого ввода на напряжение 110 кВ все чаще приводят к отказу от сооружения на ТЭЦ распределительных устройств генераторного напряжения. Их сооружают лишь в некоторых особых случаях, когда необходимо резервировать питание особо ответственных потребителей при системных авариях от генераторов ТЭЦ. Кроме того, увеличение единичной мощности ТЭЦ часто требует выдачи их мощности на более высоком напряжении и применения двух ступеней повышенного напряжения.

Наконец, в-третьих, разуплотнение графиков нагрузки объединенных энергосистем, наблюдающееся в последнее время, требует повышения маневренности оборудования электростанций, и в том числе привлечения к покрытию переменной части графика также оборудования ТЭЦ, в особенности в неотопительные периоды года.

Все эти обстоятельства приводят к следующим положениям, которые должны учитываться при выборе главной схемы ТЭЦ в современных условиях:

Удаление отопительных ТЭЦ от потребителей электрической энергии уменьшает возможности использования генераторного напряжения для питания внешних потребителей. На промышленных ТЭЦ, приближенных к потребителям по условиям пароснабжения, сохраняется возможность использования генераторного напряжения для питания электрической нагрузки в большом диапазоне, главным образом по токопроводам.

Применение на ТЭЦ генераторов повышенного напряжения не исключает возможности питания от них ближайших потребителей на напряжении 10 кВ через трансформаторы 20 (15,75)/10 кВ» подключаемые к основным блокам. Возможно сочетание такой схемы о подстанциями глубокого ввода, связанными с ТЭЦ и узловыми подстанциями энергосистемы.

При значительных мощностях ТЭЦ и расположении их в центре электрических нагрузок в большинстве случаев лучше иметь на ТЭЦ сборные шины. При отсутствии в сетях встречных потоков энергии, а также для снижения токов короткого замыкания в некоторых случаях следует предпочесть блочные схемы «генератор—трансформатор—линия» с выходом на ближайшие узловые подстанции.

При мощностях ТЭЦ, превышающих 500—600 МВт, требуются, как правило, два повышенных напряжения (обычно 110 и 220 кВ), в некоторых случаях с автотрансформаторной связью между ними.

Использование оборудования ТЭЦ в переменной части графика нагрузки энергосистемы и режимы работы турбин различных типов в неотопительные периоды влияют на основные решения главной схемы ТЭЦ, такие как распределение агрегатов, коммутируемых на шины различного напряжения, мощность трансформаторов связи и т. п. При этом сохраняется возможность питания потребителей генераторным напряжением.

Использование реактивной мощности ТЭЦ для энергосистемы, а также подключение внешних потребителей к ответвлениям блоков генератор—трансформатор могут вызвать необходимость независимого регулирования напряжения блока и применения на его трансформаторе устройств РПН.

ФГАОУ ВПО Северо-восточный федеральный университет

Физико-технический институт

Кафедра электроснабжения

Реферат на тему:

Главные схемы ТЭЦ

Выполнил ст.гр.ЭС-11:

Эверстов Е.Г.

Проверил:

Тимофеева А-М.В.

Якутск, 2014


 

А также другие работы, которые могут Вас заинтересовать

14583. Исследование преобразователя напряжения 383.65 KB
  ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к лабораторной работе Исследование преобразователя напряжения Цель работы: ознакомиться с принципом действия методами испытаний преобразователя и получить инженерные навыки анализа технических параметров преобразователей. Рисунок 1
14584. Исследование импульсного стабилизатора напряжения 170.16 KB
  ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к лабораторной работе Исследование импульсного стабилизатора напряжения Цель работы: ознакомиться с принципом действия методами испытаний импульсного стабилизатора и получить инженерные навыки анализа технических параметров импульсных ст...
14585. Распределение термоэлектронов по скоростям. Контактная разность потен-циалов 417 KB
  ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1 Распределение термоэлектронов по скоростям. Контактная разность потенциалов по дисциплине Физика твердого тела Содержание Цель работы Используемые приборы Схема измерений Результаты экспериментальных иссл
14586. Исследование параметров естественного освещения производственных помещениях 17.36 KB
  Лабораторная работа № 3 Тема: Исследование параметров естественного освещения производственных помещениях. Цель: 1. Изучить существующие санитарногигиенические нормы и требования к естественному освещению производственных помещений. 2. Освоить методику измерения ...
14587. Архиватор 7-Zip 71 KB
  Лабораторная работа. Архиватор 7Zip Цель: Приобрести навыки в использовании программыархиватора 7Zip. 1. Использование программыархиватора 7Zip Способы запуска программы: 7Zip File Manager можно запустить тремя способами: в режиме графической оболочки со стан
14588. Теплоемкость. Определение теплоемкости модуляционным методом 188 KB
  ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3 Определение теплоемкости модуляционным методом по дисциплине Физика твердого тела Содержание Цель работы Изучение модуляционного метода измерения теплоемкости и определение теплоемкости вольфрама при высоких
14589. Определение плотности твердых тел правильной формы 106.5 KB
  ОТЧЕТ по лабораторной работе №1 €œОпределение плотности твердых тел правильной формы€ Расчётная формула где ρ плотность материала; m масса цилиндра; h высота цилиндра. Средства измерения и их характеристики: ...
14590. Каскад усилительный с общим эмиттером 13.01 MB
  АНАЛОГОВАЯ СХЕМОТЕХНИКА Каскад усилительный с общим эмиттером Руководство к выполнению лабораторной работы Описание лабораторной установки Источник питания. Генер...
14591. Каскад усилительный с общим коллектором 5.04 MB
  АНАЛОГОВАЯ СХЕМОТЕХНИКА Каскад усилительный с общим коллектором Руководство к выполнению лабораторной работы Содержание Введение 1 Описание лабораторной установки 1.1 Источник питания 1.2 Генератор сигналов низкочастотный Г3112/1 1.3 Генератор прям...