76743

Анатомия эпохи Возрождения

Доклад

Биология и генетика

В методику исследования органов вводятся новые способы: инъекции сосудов и полостей распилы костей консервация органов и тканей новые химические методы бальзамирования измерения и зарисовки органов с подробным описанием. Великий итальянский художник и ученый Леонардо да Винчи вскрывая трупы производил подробное и тщательное описание анатомических структур сразу же все зарисовывал дополнял измерениями; производил инъекции сосудов желудочков мозга; создавал модели органов чтобы понять их функцию. Позиции европейских университетов в...

Русский

2015-02-01

183.2 KB

3 чел.


 Анатомия эпохи Возрождения

Университеты Европы в XIV-XV веках получили право на проведение анатомических занятий в специальных аудиториях – анатомических театрах – с разрешением вскрытия мертвого тела, изучения его строения, демонстрацией техники препарирования. В методику исследования органов вводятся новые способы: инъекции сосудов и полостей, распилы костей, консервация органов и тканей, новые химические методы бальзамирования, измерения и зарисовки органов с подробным описанием.

В анатомических театрах стали создавать коллекции сухих и влажных препаратов, которые нужно было сохранять длительное время. Для чего использовали, как правило, спиртовые растворы и мумификацию, размещая препараты в специальных помещениях. Постепенно возникали анатомические музеи, и совершенствовалось бальзамирование, которое применялось для сохранения тел знатных и богатых персон, государственных и церковных деятелей. По консервации и хранению анатомических препаратов, бальзамированию появляется специальная литература. При королевских домах устанавливаются должности придворных анатомов, производящих публичные вскрытия, изготовляющих препараты для музеев, кунсткамер. На операциях, выполняемых в те времена нередко цирюльниками, всегда присутствовал анатом, который направлял руку хирурга. Многие открытия держатся в секрете, среди анатомов и врачей нарастает конкуренция.

Великий итальянский художник и ученый Леонардо да Винчи, вскрывая трупы, производил подробное и тщательное описание анатомических структур, сразу же все зарисовывал, дополнял измерениями; производил инъекции сосудов, желудочков мозга; создавал модели органов, чтобы понять их функцию. К описанию и рисункам мышц и костей применил законы механики, проанализировал мышечную работу в системе рычагов; открыл и описал изгибы позвоночника. Установление Леонардо да Винчи общих закономерностей строения человека, топографических соотношений между органами и выявление функционально-структурных зависимостей превратила эмпирическую анатомию в научную, а его сделала основоположником системной, пластической, топографической и функциональной анатомии. Великолепное знание анатомии помогло создать художнику мировые шедевры, в том числе и портрет Моны Лизы с загадочной улыбкой.

К сожалению, труды Леонардо да Винчи по анатомии стали известны студентам, врачам и анатомам только во второй половине XVIII столетия.

Позиции европейских университетов в изучении анатомии человека в XVI веке окрепли, накопилось много точных фактов, достоверно установленных при вскрытии трупов, препарировании и бальзамировании органов. Положения древнегреческих и древнеримских анатомов и врачей (Гиппократа, Галена и других) все чаще опровергались новыми открытиями.

В европейской анатомии и медицине появляется новый лидер – Андрей Везалий (1514-1564 гг.), профессор Падуанского университета в Италии, который на основе вскрытий, препарирования и зарисовок издает «Анатомические таблицы» — небольшой атлас с достоверным описанием, изображением внутреннего строения человека. В 1543 г. в Базеле выходит многотомный труд А. Везалия «О строении тела человека», а потом краткое учебное пособие для студентов «Эпитоме».

Книги произвели переворот в анатомических представлениях врачей, т.к. разбивали древние каноны схоластической анатомии. Вместе с работами Леонардо да Винчи, Галилея, Коперника они открывали новую эру в истории естествознания.

Высоко оценил труд А. Везалия великий русский физиолог и нобелевский лауреат И.П. Павлов – «Это первая анатомия человека в новейшей истории человечества, не повторяющая только указания и мнения древних авторитетов, а опирающаяся на работу свободного ума».

Учениками и последователями А. Везалия было сделано много новых анатомических открытий, исправлены его ошибки. Вновь открытым органам часто присваиваются имена первооткрывателей: Г. Фаллопий – фаллопиевы (маточные) трубы, Л. Боталло – боталлов проток (артериальный сосуд между аортой и легочным стволом), Н. Гаймор – гайморовы (верхнечелюстная) пазуха, К. Варолий – варолиев мост (часть заднего мозга), Г. Морганьи — морганиевы (гортанные) желудочки и т.д.

Прошло 400 лет, когда на Парижском анатомическом конгрессе в 1954 году, названия органов по авторам были отменены и стали достоянием истории анатомии и медицины.

Анатомические исследования A. Везалия послужили основой для многих открытий в физиологии человека и животных. Благодаря работам М. Сервет, Р. Коломбо, Ч. Гарвея было установлено кровообращение по большому и малому сосудистым кругам. К. Азели описал брыжеечные «млечные» сосуды и движение в них лимфы.

Рукописный перевод «Эпитоме» в 1658 г. на русский язык осуществил монах Чудова монастыря Епифаний Славенецкий, в последующем преподаватель Киево-Могилевской академии и Московской лекарской школы. Церковно-славянский перевод делался для патриарха Никона по экземпляру, купленному у голландцев. Впервые издано «Эпитоме» на современном русском языке в 1974 году.

В «Эпитоме» А. Везалия шесть глав:

  1.  Первая глава – «О костях и хрящах, или о тех частях, которые дают телу опору». Кость называется «простой частью» тела, в черепе точно описаны и нарисованы клиновидная кость и нижняя челюсть, но мелкие кости: сошник, нижняя носовая раковина не выделяются в самостоятельные, а присоединяются к решетчатой кости. По суставам приводятся отдельные и неполные сведения.
  2.  Вторая глава — «О связках костей и хрящей, а также и мышцах, как орудиях произвольного движения». Все мускулы описаны подробно, но обозначены неудобно номерами, у многих мышц указаны функции, места фиксации на костях.
  3.  Третья глава – «Об органах служащих для питания, которое совершается благодаря пище и питью». Подробно и правильно описывается желудок, кишечник, но не упоминаются полость рта, глотка, пищевод. В этой же главе приводятся сведения о почках и мочевыводящих органах и венах, но понять законы кровообращения невозможно из-за допущенных ошибок.
  4.  Четвертая глава — «О сердце и органах, помогающих ему в его функции». Анатомия сердца и легких изложена кратко, предсердия не упоминаются. По А. Везалию, воздух из легких вытягивается сосудами в левый желудочек, где смешивается с «горячей кровью», благодаря чему возникает «жизненный дух», разносимый артериями к органам. В такой трактовке прослеживается влияние Гиппократа, Аристотеля и других древних ученых.
  5.  Глава пятая – «О мозге и органах, созданных для обслуживания мозга». Подробно описаны желудочки с открытыми в них сосудистыми сплетениями; выделены 7 пар черепно-мозговых нервов, но наряду с правильными сведениями в строении нервов много ошибок. Сохраняется верность древнегреческим и древнеримским указаниям о духовном треножнике Платона, о божественных актах царствующей души.
  6.  Глава шестая — «Об органах служащих для продолжения вида». Достоверно излагает строение наружных и внутренних половых органов.

Первые русские анатомы XVIII века (А.П. Протасов, М.И. Шеин, К.И. Шепин, Е.О. Мухин, И.М. Максимович-Амбодик) и XIX века (П.А. Загорский, И.В. Буяльский, Д.Н. Зернов и др.).

7


 

А также другие работы, которые могут Вас заинтересовать

81573. Биохимические механизмы мышечного сокращения и расслабления. Роль градиента одновалентных ионов и ионов кальция в регуляции мышечного сокращения и расслабления 107.85 KB
  В настоящее время принято считать что биохимический цикл мышечного сокращения состоит из 5 стадий: 1 миозиновая головка может гидролизовать АТФ до АДФ и Н3РО4 Pi но не обеспечивает освобождения продуктов гидролиза. Актомиозиновая связь имеет наименьшую энергию при величине угла 45 поэтому изменяется угол миозина с осью фибриллы с 90 на 45 примерно и происходит продвижение актинана 1015 нм в направлении центра саркомера; 4 новая молекула АТФ связывается с комплексом миозинFактин; 5 комплекс миозинАТФ обладает низким...
81574. Саркоплазматические белки: миоглобин, его строение и функции. Экстрактивные вещества мышц 122.6 KB
  Концентрация адениновых нуклеотидов в скелетной мускулатуре кролика в микромолях на 1 г сырой массы ткани составляет: АТФ 443 АДФ 081АМФ 093. в мышечной ткани по сравнению с концентрациейадениновых нуклеотидов очень мало. К азотистым веществам мышечной ткани принадлежат имидазолсодержащие дипептиды карнозин и ансерин.; метилированное производное карнозина ансерин был обнаружен в мышечной ткани несколько позже.
81575. Особенности энергетического обмена в мышцах. Креатинфосфат 126.43 KB
  Принято считать что процессом непосредственно связанным с работающим механизмом поперечнополосатого мышечного волокна является распад АТФ с образованием АДФ и неорганического фосфата. Возникает вопрос: каким образом мышечная клетка может обеспечить свой сократительный аппарат достаточным количеством энергии в форме АТФ т. каким образом в процессе мышечной деятельности происходит непрерывный ресинтез этого соединения Прежде всего ресинтез АТФ обеспечивается трансфосфорилированием АДФ с креатинфосфатом. Данная реакция...
81576. Биохимические изменения при мышечных дистрофиях и денервации мышц. Креатинурия 106.28 KB
  Общими для большинства заболеваний мышц прогрессирующие мышечные дистрофии атрофия мышц в результате их денервации тенотомия полимиозит некоторые авитаминозы и т. являются резкое снижение в мышцах содержания миофибриллярных белков возрастание концентрации белков стромы и некоторых саркоплазматических белков в том числе миоальбумина. Наряду с изменениями фракционного состава мышечных белков при поражениях мышц наблюдается снижение уровня АТФ и креатинфосфата.
81577. Химический состав нервной ткани. Миелиновые мембраны: особенности состава и структуры 152.07 KB
  Данилевский впервые разделил белки мозговой ткани на растворимые в воде и солевых растворах белки и нерастворимые белки. которые разделили белки нервной ткани на 4 фракции: извлекаемые водой 45 раствором КСl 01 раствором NOH и нерастворимый остаток. В настоящее время сочетая методы экстракции буферными растворами хроматографии на колонках с ДЭАЭцеллюлозой и дискэлектрофореза в полиакриламидном геле удалось выделить из ткани мозга около 100 различных растворимых белковых фракций.
81578. Энергетический обмен в нервной ткани. Значение аэробного распада глюкозы 129.8 KB
  На долю головного мозга приходится 23 от массы тела. Следовательно 100 г мозга потребляет в 1 мин 37 мл кислорода а весь головной мозг 1500 г 555 млкислорода. Газообмен мозга значительно выше чем газообмен других тканей в частности он превышает газообмен мышечной ткани почти в 20 раз. Интенсивность дыхания для различных областей головного мозга неодинакова.
81579. Биохимия возникновения и проведения нервного импульса. Молекулярные механизмы синаптической передачи 109.17 KB
  Молекулярные механизмы синаптической передачи Большинство исследователей придерживаются мнения что явления электрической поляризации клетки обусловлены неравномерным распределением ионов К и Nпо обе стороны клеточной мембраны. Мембрана обладает избирательной проницаемостью: большей для ионов К и значительно меньшей для ионов N. При определенных условиях резко повышается проницаемость мембраны для ионов N. Объясняется это тем что количество ионов N выкачиваемых из клетки с помощью натриевого насоса не вполне точно уравновешивается...
81580. Медиаторы: ацетилхолин, катехоламины, серотонин, γ-аминомаслянная кислота, глутаминовая кислота, глицин, гистамин 107.74 KB
  γАминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. Действие ГАМК в ЦНС осуществляется путём её взаимодействия со специфическими ГАМКергическими рецепторам Глутаминовая кислота является нейромедиаторной аминокислотой одним из важных представителей класса возбуждающих аминокислот. Эндогенные лиганды глутаминатных рецепторов глутаминовая кислота и аспарагиновая кислота.
81581. Нарушения обмена биогенных аминов при психических заболеваниях. Предшественники катехоламинов и ингибиторы моноаминооксидазы в лечении депрессивных состояний 108.33 KB
  Предшественники катехоламинов и ингибиторы моноаминооксидазы в лечении депрессивных состояний. Например резерпин понижающее артериальное давление средство специфически тормозит процесс переноса катехоламинов в специальные гранулы нейронов и тем самым делает эти амины доступными действию эндогенной МАО. Многие антидепрессанты вещества снимающие депрессию увеличивают содержание катехоламинов в синаптической щели т. К таким веществам в частности относятся имипрамин блокирует поглощение норадреналина нервными волокнами амфетамин...