76760

Крылонёбная ямка

Доклад

Биология и генетика

Ямка соседствует и имеет связи с височной и подвисочной ямами. По форме ямка узкая щель ограниченная тремя выше перечисленными костями она граничит и сообщается с полостью черепа средней черепной ямой полостями носа и рта глазницей височной и подвисочной ямами. Крылонебная ямка сообщается: с полостью рта через большой и малый небные каналы с одноименными сосудами и нервами которые снабжают твердое и мягкое небо и небные миндалины; с полостью носа через клиновиднонебное отверстие с одноименными сосудами и нервами для слизистой...

Русский

2015-02-01

181.89 KB

1 чел.


 Крылонёбная ямка

Она входит в состав лицевого черепа, но располагается на границе с наружным основанием мозгового черепа. Ямка соседствует и имеет связи с височной и подвисочной ямами. В образовании ее участвуют верхняя челюсть своим бугром и задней поверхностью, клиновидная кость — большим крылом и крыловидным отростком, небная кость — перпендикулярной пластинкой. По форме ямка — узкая щель, ограниченная тремя выше перечисленными костями, она граничит и сообщается с полостью черепа (средней черепной ямой), полостями носа и рта, глазницей, височной и подвисочной ямами.

Крылонебная ямка имеет следующие стенки:

  1.  Передняя стенка включает бугор верхней челюсти с задними альвеолярными отверстиями, через которые из ямки проходят верхние задние альвеолярные сосуды и нервы для снабжения верхней челюсти, ее альвеол, зубов и десны.
  2.  Задняя стенка – это верхнечелюстная поверхность большого крыла и основание крыловидного отростка клиновидной кости с одноименным каналом, пропускающим в ямку из области рваного отверстия вегетативный крыловидный нерв и одноименные сосуды.
  3.  Медиальная стенка- это перпендикулярная пластинка небной кости и примыкающий к ней небольшой участок клиновидной кости, через клиновидно-небное отверстие стенки из ямки проходят сосуды и нервы для слизистой полости носа.

Крылонебная ямка сообщается:

  1.  с полостью рта через большой и малый небные каналы с одноименными сосудами и нервами, которые снабжают твердое и мягкое небо и небные миндалины;
  2.  с полостью носа через клиновидно-небное отверстие с одноименными сосудами и нервами для слизистой оболочки раковин и носовых проходов;
  3.  со средней черепной ямкой через круглое отверстие, в котором проходит верхнечелюстная ветвь тройничного нерва;
  4.  с областью рваного отверстия через крыловидный канал, содержащий вегетативный нерв и сосуды одноименного названия;
  5.  с глазницей через нижнюю глазничную щель для прохождения подглазничных ветвей верхнечелюстных сосудов и нервов;
  6.  с подвисочной ямкой через крыловидно-верхнечелюстную щель, где связь осуществляет соединительно-тканная и жировая клетчатка.

Ямка заполнена клетчаткой, частью крыловидного венозного сплетения, конечными участками верхнечелюстных сосудов, верхнечелюстной ветвью Y пары и парасимпатическим крылонебным узлом головы с отходящими от него постганглионарными ветвями: глазничными, медиальными и латеральными носовыми, большими и малыми небными, нижними задними носовыми. Через ямку проходит верхнечелюстная ветвь тройничного нерва, конечный отдел верхнечелюстной артерии, верхнечелюстная вена, вливающаяся в крыловидно-небное сплетение.

От верхнечелюстного нерва в ямке отходят подглазничный и скуловой нервы, узловые ветви к крылонебному узлу. Через нижнюю глазничную щель подглазничный нерв попадает в глазницу, где ложится в подглазничные борозду и канал и отдает верхние альвеолярные нервы (передний, средний и задний) для зубов, десны и альвеол. Из глазницы через эту же щель в ямку приходят вегетативные глазничные ветви и вступают в узел. От твердого и мягкого неба в ямку поступают большие и малые небные нервы, используя для этого одноименные каналы. Из слизистой полости носа через клиновидно-небное отверстие в узел направляются вегетативные задние носовые веточки.

В крылонебной ямке находится конечный участок верхнечелюстной артерии с следующими ветвями: подглазничной, клиновидно-небной и небными артериями, глоточными веточками и ответвлениями к слуховой трубе. Подглазничная артерия покидает ямку через нижнюю глазничную щель и кровоснабжает верхнюю челюсть, зубы и десну, нижнее веко, слезный мешок и мышцы глаза, щеку и верхнюю губу, образуя анастомозы с лицевой артерией. Клиновидно-небная артерия уходит через соименное отверстие для кровоснабжения слизистой латеральной стенки и перегородки носа. В крыловидное венозное сплетение впадают вены околоушной слюнной железы, средняя менингеальная, барабанная, нижняя глазная и глубокая лицевая.

Рыхлая соединительнотканная клетчатка заполняет крылонебную ямку и служит опорой (мягким скелетом) для находящихся здесь сосудов и нервов. Она связана с клетчаткой височно-крыловидного, надкрыловидного, межкрыловидного и крыловидно-челюстного пространства. Через крыловидно-верхнечелюстную щель клетчатка проникает в подвисочную ямку, а из нее в височную яму.

Височная яма

  1.  верхняя и задняя границы: височная линия;
  2.  нижняя: подвисочный гребень больших крыльев, скуловая дуга;
  3.  передняя: скуловая кость (заднемедиальная поверхность).

Яма заполнена височной мышцей и клетчаткой, которая образует меж – и подапоневротическое и глубокое височное пространства:

  1.  межапоневротическое пространство лежит над скуловой дугой между поверхностным и глубоким листками височной фасции;
  2.  подапоневротическое расположено под височным апоневрозом, глубокое — под височной мышцей.

Подвисочная ямка

Это продолжение книзу височной ямы.

Границы:

  1.  верхняя граница: подвисочный гребень и верхний край скулового отростка; гребень служит границей между височной и подвисочной ямами;
  2.  нижняя граница: латеральная пластинка крыловидного отростка и основание большого крыла клиновидной кости;
  3.  передняя: глазничный край большого крыла и передний край крыловидного отростка;
  4.  боковая: внутренняя поверхность восходящих ветвей нижней челюсти;
  5.  задняя: передненижняя поверхность основания скулового отростка.

Подвисочная ямка сообщается с височной и крылонебной ямками через клетчаточные пространства.

Полость носа. Околоносовые пазухи, их значение, развитие в онтогенезе, варианты и аномалии.

12  


 

А также другие работы, которые могут Вас заинтересовать

24419. Понятие ОС ЮНИКС. Основные преимущества, понятие процесса в ОС ЮНИКС, отличие от предыдущих ОС 1.63 MB
  Система UNIX проектировалась как инструмент предназначенный для создания и отладки новых средств ПО. Эти идеи позволили применить UNIX не только на компьютерах с разной архитектурой но и предали этой ОС такую модульность и гибкость которая явилась основным фактором для расширения и развития самой системы. Основным преимуществом UNIX перед другими системами явилось следующее: Единый язык взаимодействия пользователя с системой вне зависимости от применяемой ЭВМ. При разработке UNIX авторы стремились совместить два несовместимых...
24420. Переадресация ввода/вывода и конвейер, зачем и почему 360.5 KB
  Процессор i486 обеспечивает механизм тестирования кеша используемого для команд и данных. Хотя отказ аппаратного обеспечения кеширования крайне маловероятен пользователи могут включить тестирование исправности кеша в число тестов выполняемых автоматически при включении питания. Примечание: Механизм тестирования кеша уникален для процессора i486 и может не поддерживаться в точности следующими версиями процессоров данной линии. При выполнении тестирования кеша само кеширование должно быть отключено.
24421. Файловая структура ОС ЮНИКС. Основное отличие и преимущество 458 KB
  Структура буфера TLB. Регистры и операции проверки буфера TLB. Структура буфера TLB . Ассоциативный буфера трансляции TLB кеш используемый для трансляции линейных адресов в физические.
24422. Координатор МАКЕ и система управления исходным кодом SCCS 110.5 KB
  Описание взаимозависимостей содержит команды которые должны быть выполнены если обнаружится что некоторый модуль устарел перестал соответствовать действительности. Такие команды обеспечивают реализацию всех необходимых для модернизации модуля действий. В одних системах интерпретатор прост но совокупность команд не образует язык программирования а в других имеются отличные языки программирования на уровне системных команд но выполнение отдельной команды осложнено. Контрольная точка задается для конкретной формы доступа к памяти...
24423. Общая характеристика основных компонентов ОС ПЭВМ 93 KB
  Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня который в свою очередь обращается к средствам физического уровня. Физический уровень выполняет передачу битов по физическим каналам таким как коаксиальный кабель витая пара или оптоволоконный кабель. Канальный уровень обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией...
24424. Таймеры счётчики ОМЭВМ 204 KB
  Основным отличием конфигураций сетей Fast Ethernet является сокращение диаметра сети примерно до 200 м что объясняется сокращением времени передачи кадра минимальной длины в 10 раз за счет увеличения скорости передачи в 10 раз по сравнению с 10мегабитной сетью Ethernet. Если среда свободна то узел имеет право начать передачу кадра. Последний байт носит название ограничителя начала кадра. Наличие двух единиц идущих подряд говорит приемнику о том что преамбула закончилась и следующий бит является началом кадра.
24425. Основные компоненты современных систем баз данных. Классификация и модели данных, реализуемых в СУБД 318 KB
  Классификация и модели данных реализуемых в СУБД. База данных – это данные организованные в виде набора записей определенной структуры и хранящиеся в файлах где помимо самих данных содержится описание их структуры. Метаданные Данные о структуре базы данных.
24426. Язык манипулирования данными, концепции и возможности языка SQL. Функции администратора баз данных 181.5 KB
  Перечисленные устройства передают кадры с одного своего порта на другой анализируя адрес назначения помещенный в этих кадрах. По адресу источника кадра коммутатор делает вывод о принадлежности узлаисточника тому или иному сегменту сети. Одновременно с передачей кадра на все порты коммутатор изучает адрес источника кадра и делает запись о его принадлежности к тому или иному сегменту в своей адресной таблице. При каждом поступлении кадра на порт коммутатора он прежде всего пытается найти адрес назначения кадра в адресной таблице.