76843

Общее строение кровеносных сосудов

Доклад

Биология и генетика

Большой круг начинается восходящей аортой из левого желудочка далее аорта разветвляется на многочисленные артерии переходящие в органах и тканях в микроскопические сосуды из которых формируются вены последовательно они сливаются в верхнюю и нижнюю полую впадающие в правое предсердие где и заканчивается большой круг. Малый легочный круг начинается легочным стволом из правого желудочка ствол распадается на правую и левую легочные артерии которые после многократных разделений внутри легких на уровне ацинуса переходят в микрососуды....

Русский

2015-02-01

185.59 KB

0 чел.


 Общее строение кровеносных сосудов

Кровеносные сосуды подразделяются на:

  1.  артерии, несущие кровь от сердца в органы и ткани;
  2.  вены, по которым кровь от тканей и органов движется к сердцу;
  3.  микроскопические сосуды — самое многочисленное звено, расположенное между артериями и венами внутри органов и тканей и необходимое для обменных процессов.

Благодаря сердцу и кровеносным сосудам образуется большой и малый круг кровообращения, сосуды которых проникают всюду, за исключением эпителия кожи и слизистых, хрящей, ногтей, волос, роговицы и хрусталика глазного яблока, где питание осуществляется диффузно. Большой круг начинается восходящей аортой из левого желудочка, далее аорта разветвляется на многочисленные артерии, переходящие в органах и тканях в микроскопические сосуды, из которых формируются вены, последовательно они сливаются в верхнюю и нижнюю полую, впадающие в правое предсердие, где и заканчивается большой круг. Малый (легочный) круг начинается легочным стволом из правого желудочка, ствол распадается на правую и левую легочные артерии, которые после многократных разделений внутри легких на уровне ацинуса переходят в микрососуды. Из них формируются в конечном итоге четыре легочных вены (по две на каждое легкое), впадающие в левое предсердие. Парадокс кровообращения в малом круге состоит в том, что по артериям течет кровь, насыщенная углекислым газом (темная), а по венам — богатая кислородом (алая).

Артерии и вены имеют состав стенки:

  1.  наружная оболочка из рыхлой соединительной ткани, насыщенная нервами и мелкими сосудами (vasa vasorum) для питания стенки;
  2.  средняя оболочка из эластических, коллагеновых и гладкомышечных волокон кругового и спирального направления:
  3.  внутренняя оболочка из эндотелия с базальной мембраной, подэндотелиального слоя с внутренней эластической мембраной, фибробластами, волокнами и отдельными гладкими миоцитами.

Артерии в зависимости от распределения в средней оболочке эластических и мышечных волокон подразделяются на артерии эластического типа (аорта, легочной ствол), мышечно-эластического (сонные, подключичные, бедренные) и мышечного (мелкие и частично среднего калибра). В венах средняя оболочка обеднена мышечными волокнами и многие из них имеют продольное направление. Внутренняя оболочка вен образует многочисленные полулунные клапаны, препятствующие обратному току крови, особенно в венах конечностей. Полые, легочные, воротная, почечные и вены головы, шеи, внутренних органов клапанов не имеют, но в них либо увеличивается количество мышечных волокон в средней оболочке , либо по периметру вены находится рыхлая клетчатка, удерживающая просвет вены постоянно открытым. На движение крови по полым венам и их притокам сильно влияет присасывающее действие грудной клетки из-за отрицательного давления в плевральных полостях и правом предсердии, дыхательных движений диафрагмы и вспомогательных мышц. Для некоторых вен характерны расширения, именуемые луковицами (верхняя и нижняя луковицы внутренней яремной вены). В твердой оболочке головного мозга находятся венозные пазухи (синусы), возникшие за счет расщепления листков этой фиброзной оболочки. Изнутри синусы выстланы эндотелием.

Закономерности расположения сосудов

  1.  Артерии и сопровождающие их вены направляются к органам по кратчайшему пути; подходят с медиальной стороны, расположенной ближе к источнику кровоснабжения - аорте.
  2.  Магистральные артерии и глубокие вены конечностей проходят с медиальной стороны от длинных трубчатых костей, артерии и вены окружают крупные суставы коллатеральными сетями.
  3.  Нисходящая аорта и нижняя полая вена идут вдоль позвоночного столба, опираясь на него и получая защиту.
  4.  Количество и топография органных артерий зависят не только от массы органа и строения, но и его закладки и функциональной значимости.
  5.  Магистральные артерии среднего калибра сопровождаются 1-3 глубокими венами.
  6.  Крупные артерии, вены вместе с рядом расположенными нервами формируют сосудисто-нервные пучки, окруженные фасциальным влагалищем и клетчаткой (Н. И. Пирогов).

Закономерности ветвления сосудов

  1.  Магистральный тип, — когда от основного ствола последовательно отходят боковые ветви.
  2.  Рассыпной тип, — когда основной ствол сразу разделяется на несколько мелких артерий, ветвление которых напоминает крону дерева.
  3.  Органная специфичность ветвления в паренхиматозных органах (легких, печени, почках) состоит в распределении сосудистых ветвей по долям, зонам, секторам, сегментам, субсегментам, долькам и структурно-функциональным единицам.
  4.  Органоспецифичность кольцеобразного или продольного ветвления с распределением по оболочкам характерна для полых органов, имеющих форму трубки.
  5.  В железы сосуды вступают по периметру органа, а внутри распределяются в соответствии с долевым и дольковым строением.
  6.  Анастомозирование (соединение) артериальных и венозных ветвей и веточек происходит с образованием сетей (сплетений), в которых возникают межсистемные и внутрисистемные связи между сосудами, принадлежащим разным системам или в пределах одной системы.
  7.   В ряде органов и частей тела имеет место сочетание межсистемных и внутрисистемных сосудистых анастомозов.
  8.  Образование анастомозов в виде замкнутых кругов (артериальный круг головного мозга, ладонные и подошвенные дуги и др.) более характерно для конечных частей тела.

Магистральными называют сосуды, которые отдельным стволом проходят через область или несколько областей, отдавая к органам висцеральные, а к стенкам туловища париетальные ветви. В качестве примеров можно привести общие сонные, подвздошные, бедренные, подключичные и другие артерии. Экстраорганные артерии и вены располагаются перед органами, а интраорганные в воротах и внутри органов, как то — общая и собственная печеночная артерия, брыжеечные артерии, их кишечные ветви и прямые кишечные артерии.

В зависимости от расположения вены могут быть поверхностными (в подкожной клетчатке) и глубокими (мышечные, органные), которые попарно или одиночно сопровождают артерии. Глубокие и поверхностные вены связываются анастомозами в виде прободающих вен. В ряде тазовых органов (мочевой пузырь, прямая кишка, матка и влагалище, семявыносящий проток) образуются венозные сплетения, что связано с вертикальным положением человека. Твердая мозговая оболочка путем расщепления своих листков образует специфические венозные сосуды - синусы (пазухи).

Кровеносные микроскопические сосуды включают пять структурных составляющих, последовательно переходящих одни в другие: артериолы, прекапилляры (артериальные капилляры), простые волосковые сосуды (капилляры), посткапилляры (венозные капилляры) и венулы. В капиллярном звене различается магистральный и сетевой типы строения, а венулы подразделяются на собирательные и мышечные. В стенке артериол и венул присутствуют по три оболочки, каждая из которых состоит из клеток, волокон и мембран. Стенка капилляров включает один клеточный и два волоконно-мембранных слоя.

Микроскопические сосуды могут быть и органоспецифичными, например, чудесная артериальная сеть в почке (приносящая артериола, прекапилляры клубочка, выносящая артериола) и чудесная венозная сеть в печени (портальная венула, синусный капилляр, центральная венула). В эндокринных, иммунных органах широко распространены синусные капилляры с широким просветом до 40 и более мкм, крупными эндотелиальными клетками в стенке и щелями между ними.

Микроскопические сосуды образуют сплетения, сети в оболочках органов, в стенках выводящих протоков, вокруг и внутри структурно-функциональных образований органа. Однако возможно присутствие среди них шунтирующих соединений - прямых артериоло-венулярных анастомозов. Работоспособное состояние микрососудов обеспечивается вегетативными нервами, стенкой самого сосуда, клетками и плазмой крови, особенно тромбоцитами и плазменными биохимическими соединениями, выполняющими ангиотрофическую, стимулирующую, ангиоспазменную и свертывающую функции.

В микроциркуляторное русло входят следующие структурные компоненты:

  1.  кровеносные микрососуды с артериальным звеном – артериолами и прекапиллярами; волосковым, капиллярным звеном – мышечными, кожными и синусными капиллярами и венозным звеном – посткапиллярами и венулами, шунтирующей частью – артериоло-венулярными анастомозами;
    1.  лимфатические микрососуды – лимфокапилляры и постлимфокапиляры или преколлекторы;
    2.  промежутки, щели и каналы интерстициального пространства, ограниченные волокнами и аморфным веществом соединительной ткани.

Закономерности кровотока соответствуют основным положениям гидродинамики.

  1.  В замкнутой трубчатой системе сохраняется постоянство обменного расхода жидкости.
  2.  При суммарном изменении диаметра трубок изменяется и скорость движения жидкости.
  3.  Энергия определенного объема текущей жидкости складывается из гидростатического столба, его тяжести, статического давления на стенку трубки и динамического давления насосного выброса.

Кровь движется благодаря разности гидростатического и гидродинамического, онкотического давления между полостями сердца и сосудов, между микрососудами и тканями. Сокращение миокарда и мышечных оболочек сосудов, скелетных мышц, движения органов поддерживают и перераспределяют кровяное давление. В просвете сосудов и сердца формируется осевой и пристеночный кровоток, показатели которого изменяются в зависимости от калибра сосуда и объема сердечных камер, структурно-функционального состояния их стенок, а также скорости движения плазмы и форменных элементов крови.

Анастомозы артерий и анастомозы вен. Пути окольного (коллатерального) кровотока - примеры.

2  


 

А также другие работы, которые могут Вас заинтересовать

22015. Польские земли до XV вв. 115.5 KB
  В Польше некоторое ограничение крестьянских выходов были узаконено для всей Малой Польши Вислицким статутом Казимира III так как села пустеют то мы устанавливаем чтобы из одного села в другое вопреки желанию господина села в котором они живут могло перебраться не больше чем 12 кметя. Изданный одновременно для Великой Польши Пётрковский статут разрешал выход на рождество если за крестьянином не было недоимок. В христианизации Польши большую роль сыграла Чехия. Мешко в борьбе с Чехией овладел Силезией и частью Малой Польши.
22016. Польша в XVI-XVII вв. 89 KB
  В XVI в. Население Польши росло вплоть до середины XVII в. Судя по данным описей второй половины XVI в.
22017. Скандинавия до XV в. 127.5 KB
  Температура января – в Северной Норвегии 0 7 в Южной и Центральной Швеции – от 1 до 3. Климат морской в Норвегии Дании Исландии умеренно континентальный на большей части Швеции. Это было вызвано тем что доля территории Швеции и Норвегии это не касается Дании на которой можно вести земледельческое хозяйство невелика – в Норвегии – 3 в Швеции – 9 в Исландии – около 1 от площади страны. Полная деревня Швеции – 48 дворов.
22018. Кальциевый насос животной клетки 208.5 KB
  Он выполняет важнейшую функцию активный перенос ионов кальция через мембраны клеток поддерживая тем самым низкую концентрацию этих ионов в клетке 107 М по сравнению с окружающей средой 3103 М. Введение В цитоплазме клеток концентрация ионов кальция составляет всего 50100 нМ 5108 1107 М тогда как в окружающей клетки среде она равна примерно 3 мМ 3103 М. Поддерживает эту разницу в концентрации на четыре порядка величины система активного транспорта ионов кальция главную роль в которой играет кальциевый насос ...
22019. Общая схема реакций 129.5 KB
  Кинетика окисления ионов Fe2 образование продуктов перекисного окисления липидов MDA и хемилюминесценции I в суспензии митохондрий к которой добавлены ионы двухвалентного железа момент введения показан стрелкой Vladimirov Yu. Кинетика окисления ионов Fe2 образование продуктов перекисного окисления липидов MDA и хемилюминесценции I в суспензии митохондрий к которой добавлены ионы двухвалентного железа момент введения показан стрелкой Vladimirov Yu. Кинетика процесса перекисного окисления обладает большой сложностью...
22020. Кинетика химических реакций 144.5 KB
  Зависимость изменения концентрации участников реакции т. субстратов и продуктов от времени называют кинетикой реакции. Итак повторим некоторые определения: Субстраты вещества вступающие в реакцию Продукты вещества образующиеся в результате реакции Промежуточные вещества продукты сразу же вступающие в новую реакцию Скорость реакции изменение концентрации одного из продуктов который рассматривается в качестве главного.
22021. Принцип метода ЭПР 488.5 KB
  Кроме свободнорадикальных состояний методом ЭПРисследуют триплетные состояния возникающие в ходе фотобиологических процессов. Пионерами применения ЭПР в биологических исследованиях в СССР были Л. Характеристики спектров ЭПР Амплитуда сигнала Сигнал ЭПР представляет собой первую производную от линии.
22022. Сила, работа и энергия 219 KB
  Экспериментальная работа с биологическими объектами ставит своей задачей по сути дела моделирование процессов протекающих в живом организме. Сила работа и энергия Из физики мы знаем что сила это причина изменения скорости тела. По определению работа A равна произведению силы F действующей на некоторое тело на перемещение s этого тела в направлении действия силы. И сила и перемещение векторы; работа же скалярная величина равная призведению этих векторов: 1 Будучи скаляром работа рассматривается в термодинамике а...
22023. Реакции окисления-восстановления 126.5 KB
  Атомы цинка могут переходить из металлической решетки в водный раствор в виде ионов цинка Zn2; при этом освободившиеся электроны уходят по электрической цепи т. происходит процесс: Zn Zn2 2e Отрыв электрона от цинка называется процессом его окисления присоединение электронов к ионам цинка называют их восстановлением. Интуитивно мы понимаем что увеличение потенциала будет способствовать восстановлению ионов цинка до металлического цинка тогда как его уменьшение наоборот окислению цинка до ионов см. Для этого рассчитаем количество...