76910

Преддверно-улитковый нерв. VIII пара черепных нервов и топография ее ядер. Проводящие пути органов слуха и равновесия

Доклад

Биология и генетика

Преддверная и улитковая части VIII пары объединяются во внутреннем слуховом проходе и направляются через заднюю черепную яму к мозговому стволу к его поперечной борозде между мостом и продолговатым мозгом где латеральнее лицевого и промежуточного нервов входят во внутрь моста и заканчиваются синапсами на ядрах вестибулярного поля моста. Вестибулярное поле находится в латеральных углах ромбовидной ямки на него проецируются два улитковых и четыре вестибулярных ядра залегающих в вентролатеральных отделах моста. Улитковые ядра: переднее и...

Русский

2015-02-01

183.89 KB

3 чел.


 Преддверно-улитковый нерв

VIII пара черепных нервов и топография ее ядер. Проводящие пути органов слуха и равновесия.

VIII пара - преддверно-улитковые нервы - чувствительные, развиваются вместе с органом слуха и равновесия из заднего мозгового пузыря и представляют часть проводящего пути слухового и вестибулярного анализаторов.

Воспринимающий аппарат в рецепторном поле в виде эпителиально-сенсорных (волосковых), поддерживающих и базальных клеток располагается внутри височной кости – в улитке и полукружных каналах внутреннего уха, а именно:

  1.  в спиральном органе на барабанной лестнице и базиллярной пластинке улитки - для органа слуха;
  2.  в пятнах эллиптического и сферического мешочков, ампулярных гребешках в полукружных протоках (каналах) - для органа равновесия.

На клетках рецепторного поля замыкаются синапсами короткие периферические отростки нейронов, расположенных в преддверном и спиральном узлах внутреннего уха.

Преддверный узел лежит на дне внутреннего слухового прохода, периферические отростки его нейронов образуют короткие нервы: ампулярные - передний, задний и латеральный и мешотчатые – эллиптический, сферический, которые заканчиваются в рецепторном поле.

Спиральный узел лежит в спиральном канале улитки, и его нервы через каналы модиолуса достигают рецепторного слоя.

Преддверная и улитковая части VIII пары объединяются во внутреннем слуховом проходе и направляются через заднюю черепную яму к мозговому стволу – к его поперечной борозде между мостом и продолговатым мозгом, где латеральнее лицевого и промежуточного нервов входят во внутрь моста и заканчиваются синапсами на ядрах вестибулярного поля моста.

Вестибулярное поле находится в латеральных углах ромбовидной ямки, на него проецируются два улитковых и четыре вестибулярных ядра, залегающих в вентролатеральных отделах моста.

Улитковые ядра: переднее и заднее располагаются одно вентральнее другого и сбоку от ядер органа равновесия.

Вестибулярные ядра: медиальное (ядро Швальбе), латеральное (ядро Дейтерса), верхнее (ядро Бехтерева), нижнее (ядро Роллера) занимают медиальную позицию по отношению к улитковым ядрам.

Периферический отдел вестибулярного анализатора состоит из двух микроанатомических частей отолитовой мембраны и желатинозной купулы с воспринимающими импульсы волосковыми, эпителиальными сенсорными клетками.

  1.  Волосковые клетки, расположенные в пятнах эллиптического и сферического мешочков, принимают линейные гравитационные ускорения и вибрацию, а также противостоящие им мышечные усилия и мышечный тонус, что необходимо для определения пространственного положения тела.
  2.  Волосковые сенсоэпителиоциты в ампулярных гребешках полукружных каналов воспринимают угловые ускорения и положение тела при перемещениях его в пространстве.

Сенсорные эпителиоциты обеих частей взаимодействуют между собой, т.к. объединены эфферентными отростками нейронов преддверного узла.

Плод с 14-15 недель уже воспринимает и корректирует свое положение, т.к. эфферентные узловые волокна миелинизированы и быстро проводят импульсы.

Сенсорные гребешки в ампулах у человека имеют полулунную форму. Отроги их заполняют окружность ампулы наполовину. Над гребешком нависает эллиптическая купула (студневидный колпачок), канальцы которой пронизаны волосковыми отростками сенсорных эпителиоцитов. Субкупулярное пространство заполнено эндолимфой, благодаря движениям которой купула способна перемещаться и вызывать колебания волосков (стерео- и киноцилий). Эндолимфа вызывает перемещения отолитовой мембраны и желатинозной купулы по стерео- и киноцилиям волосковых эпителиоцитов, что вызывает раздражение, улавливаемое нервами преддверного узла.

Вестибулярный проводящий путь

Восходящая часть состоит из аксонов клеток вестибулярных ядер, расположенных в латеральном углу ромбовидной ямки – это вторые нейроны. В преддверных узлах лежат первые нейроны, центральные отростки которых формируют часть VIII пары.

Главный путь - вестибуломозжечковый - волокна его проходят по нижней мозжечковой ножке в кору червя (узелок). Задний продольный пучок направляется к подкорковым центрам зрения, имеет ответвление в мозжечок для координации со зрительным анализатором. Третьи нейроны - грушевидные нейроны мозжечковой коры заканчиваются отростками в зубчатом ядре и ядре шатра, где находятся четвертые нейроны.

Нисходящая часть пути состоит из нейронов ядер шатра и зубчатого, от которых начинаются волокна мозжечково-преддверного пути, проходящие в составе мозжечково-ядерного пути по нижней мозжечковой ножке в латеральное вестибулярное ядро. Из латерального вестибулярного ядра импульс переключается на преддверно-спинномозговой путь в боковых канатиках спинного мозга и на задний продольный пучок.

Из зубчатого ядра начинаются также денто-рубральный и денто-таламический пути. Оба они устанавливают связи с экстрапирамидной системой.

Вестибулярные импульсы в кору большого мозга приходят через мозжечок по денто-таламическому и таламо-кортикальному путям, попадая в верхнюю и среднюю височные извилины, в нижнюю часть постцентральной извилины.

Слуховой проводящий путь

Воспринимающий аппарат слухового анализатора — волосковые клетки на базилярной мембране в спиральном органе. От них импульс получают терминальные окончания биполярных нейронов, лежащих в спиральном узле улитки.

Центральные отростки биполярных клеток спирального узла формируют улитковую часть нерва, которая вместе с преддверной выходит через внутренний слуховой проход в заднюю черепную яму и вступает в борозду между мостом и продолговатым мозгом, направляясь к нейронам улитковых ядер заднего мозга. Переднее и заднее слуховые (улитковые) ядра находятся в вестибулярном поле ромбовидной ямки, что занимает латеральный угол.

Отростки клеток переднего ядра переходят на противоположную сторону, образуя трапециевидное тело моста. Отростки клеток заднего ядра формируют мозговые полоски IV желудочка, которые по срединной борозде ромбовидной ямки погружаются в глубину мозга и присоединяются к волокнам трапециевидного тела.

В мосту волокна переднего ядра изгибаются в латеральную сторону (начало латеральной петли) и идут в ее составе вместе с волокнами заднего слухового ядра к подкорковым центрам. Медиальное коленчатое тело и нижние холмики - подкорковые центры слуха - принимают аксоны улитковых ядер. Слуховой путь проходит через заднюю ножку внутренней капсулы. Конечный пункт восходящего слухового пути - верхняя височная извилина с ее короткими поперечными бороздами и извилинами.

В нижних холмиках среднего мозга происходит переключение слухового пути на нисходящий экстрапирамидный путь - тектоспинальный тракт.

14  


 

А также другие работы, которые могут Вас заинтересовать

83639. Метод эквивалентных синусоид (метод расчета по действующим значениям) 181 KB
  Катушка с ферромагнитным сердечником Нелинейная катушка индуктивности изображена на рис. Различают параллельную и последовательную схемы замещения катушки с ферромагнитным сердечником. Схемы замещения уравнения и векторные диаграммы для катушки c ферромагнитным сердечником Схема замещения Уравнения и соотношения для параметров Векторная диаграмма Параллельная Последовательная где где Примечание. Трансформатор с ферромагнитным сердечником Трансформатор с ферромагнитным сердечником изображен на рис.
83640. Переходные процессы в нелинейных цепях 165 KB
  На нелинейные цепи не распространяется принцип суперпозиции поэтому основанные на нем методы в частности классический или с использованием интеграла Дюамеля для расчета данных цепей не применимы. Отсутствие общности подхода к интегрированию нелинейных дифференциальных уравнений обусловило наличие в математике большого числа разнообразных методов их решения нацеленных на различные типы уравнений. Применительно к задачам электротехники все методы расчета по своей сущности могут быть разделены на три группы: аналитические методы...
83641. Графические методы анализа переходных процессов в нелинейных цепях 196.5 KB
  По сравнению с рассмотренными выше аналитическими методами они обладают следующими основными преимуществами: отсутствием принципиальной необходимости в аналитическом выражении характеристики нелинейного элемента что устраняет погрешность связанную с ее аппроксимацией; возможностью проведения расчетов при достаточно сложных формах кривых нелинейных характеристик. Метод фазовой плоскости Метод позволяет осуществлять качественное исследование динамических процессов в нелинейных цепях описываемых дифференциальными уравнениями первого и...
83642. Цепи с распределенными параметрами 159.5 KB
  Однако на практике часто приходится иметь дело с цепями линии электропередачи передачи информации обмотки электрических машин и аппаратов и т. уже при к линии следует подходить как к цепи с распределенными параметрами. Для исследования процессов в цепи с распределенными параметрами другое название длинная линия введем дополнительное условие о равномерности распределения вдоль линии ее параметров: индуктивности сопротивления емкости и проводимости. Уравнения однородной линии в стационарном режиме Под первичными параметрами линии...
83643. Линия без искажений 208 KB
  Таким образом для отсутствия искажений что очень важно например в линиях передачи информации необходимо чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием поскольку только в этом случае сложившись они образуют в конце линии сигнал подобный входному. Однако искажения могут отсутствовать и в линии с потерями. Фазовая скорость для такой линии и затухание .
83644. Входное сопротивление длинной линии 156 KB
  В общем случае для линии с произвольной нагрузкой для входного сопротивления можно записать. Полученное выражение показывает что входное сопротивление является функцией параметров линии и ее длины и нагрузки. При этом зависимость входного сопротивления от длины линии т.
83645. Сведение расчета переходных процессов в цепях с распределенными параметрами к нулевым начальным условиям 149 KB
  Таким образом если к линии в общем случае заряженной подключается некоторый в общем случае активный двухполюсник то для нахождения возникающих волн необходимо определить напряжение на разомкнутых контактах ключа рубильника после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами включаемой на это напряжение при нулевых начальных условиях. Полученные напряжения и токи накладываются на соответствующие величины предыдущего режима. При отключении нагрузки или участков линии для расчета возникающих волн напряжения и...
83646. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА 122.5 KB
  Эрстедом влияния электрического тока на магнитную стрелку. Омом было найдено соотношение между силой тока электродвижущей силой источника энергии и сопротивлением проводника по которому проходит ток т. Создателем техники трехфазного тока является русский ученый М. Им создан первый асинхронный двигатель с ротором типа беличье колесо 1889 первый трехфазный генератор переменного тока 1888.