7699

Закономерности физического и духовного развития

Доклад

Педагогика и дидактика

Закономерности физического и духовного развития. Развитие - 1. процесс и результат количественных и качественных изменений человека 2. процесс физического, психического, социального с...

Русский

2013-01-27

30.5 KB

103 чел.

Закономерности физического и духовного развития.

 Развитие – 1. процесс  и  результат  количественных  и  качественных  изменений  человека;

2. процесс  физического, психического, социального  созревания, количественных  и  качественных  изменений  его  свойств.

Общие  закономерности:

  1.  большая  интенсивность  развития  в  детстве;
  2.  взаимосвязь  психического  и  физического  развития;
  3.  переход  количественных  изменений  в  качественные;
  4.  скачкообразность;
  5.  развитие  происходит  в  деятельности;
  6.  для  ребенка  необходимо  социальное  окружение.

 Исследования  в  области человеческого  развития  выявили  ряд  важных  закономерностей, без  учета  которых  невозможно  спроектировать  и  организовать  эффективную  учебно-воспитательную  деятельность. Педагогика  опирается  на  закономерности  физического  развития:

  1.  В  более  молодом  возрасте  физическое  развитие  человека  идет  быстрее  и  интенсивнее; по  мере  того, как  человек  становится  старше, темп  развития  замедляется.
  2.  Физически  ребенок  развивается  неравномерно: в  одни  периоды – быстрее, в  другие – медленнее.
  3.  Каждый  орган  тела  развивается  в  своем  темпе; в  целом  части  тела  развиваются  неравномерно  и  непропорционально.

 С  физическим  неразрывно  связано  духовное  развитие, в  динамике  которого  также  есть  значительные  колебания, обусловленные  неравномерностью  созревания  нервной  системы  и  развития  психических  функций. Исследования  показывают, что  существенные  отличия  между  людьми  выражаются  прежде  всего  в  уровне  интеллектуальной  деятельности, потребностях, интересах, мотивах, нравственном  поведении. Духовное  развитие  подчиняется  ряду  закономерностей:

  1.  Между  возрастом  человека  и  темпами  духовного  развития  существует  обратно  пропорциональная  зависимость: по  мере  взросления  человека  темп  его  духовного  развития  замедляется.
  2.  Духовное  развитие  человека  во  многом  обусловлено  особенностями  его  психофизиологического  развития  и  наоборот.
  3.  Степень  духовного  развитие  человека  детерминируется (определяется)  широтой  его  внешних  связей  и  отношений, многообразием  деятельности.
  4.  Духовное  развитие  людей  протекает  неравномерно, что  обусловлено  врожденными  предпосылками, степенью  активности  личности, направленной  на  самосовершенствование, особенностями  воздействия  внешних  факторов.


 

А также другие работы, которые могут Вас заинтересовать

42419. Комбинаторика. Основные комбинаторные принципы и соединения 198.5 KB
  Введем некоторые важные обозначения: множества будем обозначать заглавными буквами; множества состоят из элементов которые будем обозначать малыми буквами. Такие множества будем изображать перечислением элементов заключая их в фигурные скобки. 3 Количество элементов в множестве называется мощностью и записывается как . Комбинаторные соединения Некоторая совокупность элементов данного nмножества называется выборкой.
42420. Булева алгебра. Законы логики высказываний. Эквивалентные преобразования 83 KB
  Законы логики высказываний. Теоретическая часть Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса: 1 тождественно истинные тавтология; 2 тождественно ложные противоречие; 3 нейтральные. Особое место в логике высказываний занимают законы логики тождественно истинные формулы тавтологии. Законы логики высказываний Закон тождества: А эквивалентно А.
42421. Равносильность формул. Закон двойственности. Логические функции 120.5 KB
  Каждая формула представляет собой функцию входящих в нее букв А В Определение1: Формулы F1 и F2 называются равносильными если при любых значениях входящих в них переменных x1x2xn эти формулы принимают одинаковые значения. Между понятиями равносильности и эквивалентности существует связь: если формулы F1 и F2 равносильны то формула F1F2 эквивалентность принимает одни и те же значения при всех значениях переменных и обратно: если формула F1F2 принимает одни и те же значения при всех значениях переменных то формулы F1 и F2...
42422. Нормальные формы формул. Проблема разрешения 89 KB
  Теорема 1 о приведении к ДНФ: Для любой формулы А можно найти такую формулу В находящуюся в ДНФ что АВ. Формула В называется ДНФ формулы А. Конечно например все ДНФ данной формулы равносильны. Выделим среди ДНФ так называемую совершенную дизъюнктивную нормальную форму формулы.
42423. Полные системы булевых функций. Многочлен Жегалкина. Теорема Поста 60 KB
  Цель работы: овладение навыками представления булевых функций в виде полинома Жегалкина. Теоретическая часть Таблицы истинности булевых функций сростом числа аргументов становятся громоздкими и неудобными. Более удобный аналитический способ задания булевых функций основан на рассмотрении двузначной алгебры Поста с операцией суперпозиции над множеством булевых функций.
42424. Минимизация булевых функций методом Квайна 686 KB
  Теоретическая часть Рассмотренные выше совершенная дизъюнктивная и конъюнктивная нормальные формы СДНФ и СКНФ используются для первоначального представления заданной переключательной функции через функции основной системы. Но эти формы не удобны для построения логических схем ЭВМ так как часто содержат элементы которые можно исключить при синтезе схем исходя из других форм представления функции. Существует ряд эффективных способов нахождения минимальной ДНФ булевой функции. Применяемая в методе Квайна операция неполного склеивания...
42425. Функциональные схемы 435 KB
  Такие схемы встречаются в электронных устройствах используемых в компьютерах калькуляторах телефонных системах и ряде других устройств. Постановка задачи синтеза логических схем По аналогии с тем как из трех элементарных частиц  протонов нейтронов и электронов порождаются различные химические элементы которые соединяясь в молекулы образуют вещества всей живой и неживой природы из трех простейших логических схем  дизъюнктора конъюнктора и инвертора можно образовать сколь угодно сложные функциональные схемы соответствующие...
42426. Нечёткие множества 218 KB
  Стандартное четкое множество строится на основе математической конструкции отсеивающей из универсального множества некоторую часть его элементов. То есть фактически любое множество определяется этим самым свойством или набором свойств S и объединяет некоторое количество не обязательно конечное счетное элементов обладающих свойством S. А теперь давайте попробуем из всей бесконечности всего в нашей Вселенной в которой очевидно есть место и для таких объектов как вода и стаканы сформировать множество на основе вполне понятного...
42427. Фракталы 803.5 KB
  Цель работы: ознакомиться с фрактальными структурами в физических системах и явлениях и научиться их программировать. Как подступиться к моделированию каскадных водопадов или турбулентных процессов определяющих погоду Фракталы и математический хаос подходящие средства для исследования поставленных вопросов. Термин фрактал относится к некоторой статичной геометрической конфигурации такой как мгновенный снимок водопада.