77188

Знаковизначенні квадратичні форми

Лекция

Математика и математический анализ

Познайомити з послідовністю приведення квадратичної форми до нормального вигляду; вивчити закон інерції квадратичної форми; познайомити з поняттями додатної та від’ємної визначеності квадратичної форми та вивчити критерії додатної визначеності. Нормальний вид комплексної і нормальний вид дійсної квадратичної форми. Знаковизначенні квадратичні форми.

Украинкский

2017-02-21

279 KB

3 чел.

Лекція 20.

Тема. Знаковизначенні квадратичні форми.

Мета вивчання:

  • познайомити з послідовністю приведення квадратичної форми до нормального вигляду;
  • вивчити закон інерції квадратичної форми;
  • познайомити з поняттями додатної та від’ємної визначеності квадратичної форми та вивчити критерії додатної визначеності.

План.

  1. Нормальний вид комплексної і нормальний вид дійсної квадратичної форми.
  2. Знаковизначенні квадратичні форми.

Література. [3], стор.166-184.

Зміст лекції.

1.Відомо, що будь-яка квадратична форма  відn змінних:x1,..,xn, що розглядається над полемР за допомогою невиродженого лінійного перетворення з матрицею, елементами якої є елементи поляР може бути приведена до свого канонічного виду. Причому, канонічний вигляд квадратичної форми залежить від вибору невиродженого лінійного перетворення змінних. Однак, яким би не було обрано невироджене лінійне перетворення змінних канонічний вигляд одержаної квадратичної форми містить рівноr квадратів змінних з коефіцієнтами не рівними нулю, деr – ранг вихідної квадратичної форми.

Нехайf(x1,.., xn) – комплексна квадратична форма рангуr.Тоді деяким невиродженим лінійним перетворенням змінних з комплексними коефіцієнтами, що переводитьx1 .., xnу y1, .. ,yn, одержимо квадратичну форму fканонічного вигляду:

f = α1 y12 +...+ αr yr2 , де α1·...αr≠ 0·,  С.

Здійснимо таке невироджене лінійне перетворення змінних з комплексними коефіцієнтами, що переводитьy1, .. ,yn у  z1, ..., zn :

(1)

Матриця перетворення в цьому випадку має вигляд:

У результаті послідовного виконання двох зазначених невироджених лінійних перетворень змінних з комплексними коефіцієнтами, вихідна комплексна квадратична форма буде приведена до нормального вигляду:

f= z12+...+ zк2 .

Він являє собою сумуrквадратів з коефіцієнтами рівними + 1.

Для будь-якої комплексної квадратичної форми відnзмінних, ранг якої дорівнюєrневиродженим лінійним перетворенням змінних приводиться до того самого нормального виду (до суми квадратівr змінних з коефіцієнтами +1).

Нехайf(x1,...,xn) – дійсна квадратична форма відn змінних ранг якої дорівнюєr . Вона також деяким невиродженим лінійним перетворенням змінних з дійсними коефіцієнтами може бути приведена до свого канонічного виду зr квадратами нових змінних і з ненульовими дійсними коефіцієнтами:

f= α1 y12 + ... + α2 y22, 1 ≤in, αi R    α1... αr ≠ 0.

Серед коефіцієнтів одержаної квадратичної форми можуть бути як додатні, так і від’ємні. Нехай

f = α1 y12 + ... + αk yk2 - αk+1 yk+1 - ... - αr yr2, де 1 ≤ir,αi > 0,  0 ≤ k ≤r

Тепер існує . Здійснюючи невироджене лінійне перетворення (1) одержимо нову квадратичну форму:

,

інші члени мають нульові коефіцієнти.

Таким чином, знайдений нормальний вигляд дійсної квадратичної форми є сумою квадратівn змінних з коефіцієнтами + 1 або – 1.

З огляду на те, що канонічний вигляд визначається неоднозначно укладаємо, що нормальний вигляд визначається неоднозначно.

З'ясуємо, чи залежить число додатних коефіцієнтів та число від’ємних коефіцієнтів від вибору невиродженого лінійного перетворення змінних . Відповідь на це питання даєзакон інерціїдійсної квадратичної форми.

Теорема (закон інерції квадратичної форми).Число додатних і число від’ємних квадратів у нормальному вигляді дійсної квадратичної форми від вибору невиродженого лінійного перетворення змінних з дійсними коефіцієнтами, що приводять її до нормального виду, не залежить.

#  Нехай  - дійсна квадратична форма відn змінних рангуr. Нехай вона невиродженим лінійним перетворенням змінних, що переводить  в  приводиться до нормального вигляду:

.

І невиродженим лінійним перетворенням, що переводить  в  приводиться до нормального вигляду:

.

Покажемо, що .

Перетворення, що переводить  в  - невироджене, а тому існує  обернене до нього. Нехай таким буде наступне:

або

.

Це перетворення – невироджене, тобто визначник його матриці не дорівнює нулю.

Аналогічно, перетворення, що переводить  в  також невироджене і для нього існує обернене перетворення:

,

і визначник матриці цього перетворення також не дорівнює нулю.

Припустимо, що . Для визначеності, нехай . Тоді розглянемо систему лінійних однорідних рівнянь:

(2)

Ця система містить  рівнянь зn невідомими , отже, вона невизначена. Нехай  - один з розв’язків цієї системи. Тоді ураховуючи, що

=(3)

і позначаючи  і  - значення відповідних лінійних форм в точці , будемо мати:

=.

Звідки

=, або

-.(4)

Тому що усі лінійні форми дійсні і числа  також дійсні, то одержана рівність можлива лише тоді, коли всі доданки суми в лівій частині (4) – нулі, зокрема  коли  Таким чином, вектор  є розв’язком системи лінійних однорідних рівнянь:

А це можливо, якщо визначник цієї системи дорівнює нулю, але він співпадає з визначником матриці другого перетворення () який, за умовою, не дорівнює нулю. Таким чином, приходимо до протиріччя. Отже, наше припущення про те, що  не вірне. Аналогічно доводиться, що  також хибне, отже, .

Таким чином, нормальний вигляд дійсної квадратичної форми не залежить від вибору невиродженого лінійного перетворення змінних з дійсними коефіцієнтами, що приводить її до нормального вигляду. #

Означення.Додатним індексом інерції дійсної квадратичної форми називається число додатних квадратів її нормального вигляду.

Від’ємним індексом інерції дійсної квадратичної форми називається число від’ємних квадратів її нормального вигляду.

Різниця між додатним і від’ємним індексами інерції називаєтьсясигнатуроюдійсної квадратичної форми.

2.Серед усіх дійсних  квадратичних форм виділяють так називані знаковизначені квадратичні форми.

Означення. Дійсна квадратична форма відn змінних називаєтьсядодатно-визначеною, якщо її нормальний вигляд являє собою сумуn додатних квадратів.

Отже, в додатно-визначеній квадратичній формі і ранг і додатній індекс інерції дорівнюютьn, а від’ємний дорівнює 0.

Означення. Дійсна квадратична форма відn змінних називаєтьсявід’ємно-визначеною, якщо її нормальний вигляд являє собою сумуn від’ємних квадратів.

У неї і ранг і від’ємний індекс інерції дорівнюютьn.

Теорема 1.Дійсна квадратична форма від n змінних є додатно -(від’ємно-) визначеною тоді і тільки тоді, коли при всяких дійсних значеннях змінних x1, ...,xn, серед яких хоча б одне відмінне від нуля, ця форма приймає строго додатні (від’ємні) значення.

#Нехай форма  додатно-визначена, тобтоприводиться до нормальноговигляду

(5)

причому

(6)

звідмінним від нуля визначником з дійсних коефіцієнтів.Якщо михочемо підставити в  довільні дійсні значенняневідомих,хоча б одне з яких відмінне від нуля, то можна підставити їх спочатку в (6), а потім значення,одержані для всіхуі—в (5). Помітимо, що значення, одержані дляз (6), не можутьусі відразудорівнювати нулю, тому що інакше ми бодержали, що система лінійних однорідних рівнянь

має ненульовийрозв’язок, хоча її визначниквідмінний від нуля. Підставляючи знайдені  длязначення  в (5), миодержимо значення форми , щодорівнює сумі квадратівпдійсних чисел, які невсі дорівнюютьнулю; це значення буде, отже, строгододатним.

Обернено, нехай форма  неє додатно-визначена, тобто або її ранг, або додатний індекс інерції менший зап.Це означає, що в нормальномувигляді цієї форми, до якого вонаприводиться, скажімо,невиродженим лінійним перетворенням (6), квадрат хоча бодного зновихневідомих, наприкладуп,абовідсутній зовсім, або жміститьсязі знаком мінус. Покажемо, що в цьому випадку можна підібрати такі дійсні значення дляневідомих,які невсі дорівнюютьнулю, що значення форми  при цих значеннях невідомих дорівнюєнулю або навіть від’ємне. Такими будуть, наприклад, ті значення для,які миодержимо, розв’язуючи за правиломКрамерасистему лінійних рівнянь, щовиходять із (6) приДійсно, при цих значеннях невідомихформа  дорівнюєнулю, якщоне входитьдо нормальноговигляду цієї форми, і дорівнює —1, якщовходить до нормальноговиглядузі знаком мінус.

Аналогічно проводиться доведення для від’ємно-визначеної форми. #

Зауваження. Цей критерій має тільки теоретичне значення, тому що на практиці перебрати всі значення неможливо. Можна лише стверджувати, що якщо при деякому ненульовому наборі дійсних значень змінних форма одержує значення нуль чи від’ємне, то вона не є додатно-визначеною.

Теорема (Критерій  Сильвестра).Дійсна квадратична форма від n змінних  тоді і тільки тоді є додатно-визначеною, коли всі головні мінори матриці цієї квадратичної форми строго додатні.

# Доведення проводимо методом математичної індукції.

  1. При  твердження теореми справедливе, тому що . Дійсна квадратична форма від однієї змінної додатно-визначена тоді, і лише тоді, коли  (головний мінор).
  2. Припускаємо справедливість теореми для дійсної квадратичної форми від  змінної.
  3. Доведемо її справедливість для квадратичної форми відn змінних. При цьому будемо використовувати два наступні факти:

А) якщо дійсна квадратична форма  має матрицюА, а після застосування невиродженого лінійного перетворення з дійсними коефіцієнтами з матрицеюС вона приводиться до свого нормального вигляду, матриця якого –В, то

, звідки , тобто

б) Квадратична форма  може бути записана так:

=

де  - квадратична форма відn-1 змінної.

Усякий головний мінор формиf порядку1,…,n-1 є відповідним головним мінором квадратичної форми .

Нехай дійсна квадратична формаf є додатно-визначеною. Тоді і  також є додатно-визначеною. Дійсно, в противному випадку при ненульовому наборі значень дійсних невідомих  формаfотримає те саме значення, що і форма , тобто не виявиться додатно-визначеною, що суперечить умові.

Висновок. Якщоf є додатно-визначеною, тоді, за припущенням індукції, усі головні мінори квадратичної форми  строго додатні, а значить і всі головні мінори порядку1,…,n-1 квадратичної формиf також додатні. Останній головний мінор формиf – це визначник матриціА (матриці квадратичної форми). Якщо формуf записати у нормальному вигляді, то її матрицяВ буде мати вигляд:

, де .

Звідси випливає, що  (тому що ).

Таким чином, доведено, що якщо квадратична формаf є додатно-визначеною, то всі головні мінори цієї квадратичної форми строго додатні.

Обернена теорема.Нехай всі головні мінори дійсної квадратичної форми  строго додатні. Доведемо, що вона є додатно-визначеною.

Якщо всі головні мінори квадратичної формиfстрого додатні, то тоді строго додатні всі головні мінори квадратичної форми . Тоді, за припущенням індукції, квадратична форма  є додатно-визначеною, тобто існує невироджене лінійне перетворення з дійсними коефіцієнтами, що переводить змінні  у змінні  і приводить форму  до її нормального вигляду:

.

Якщо доповнити це невироджене лінійне перетворення умовою: , то перетворення залишиться невиродженим. При цьому, квадратична формаfбуде приведена до вигляду:

Якщо виконати тепер невироджене лінійне перетворення змінних, що переводить  у , де

i=1,…,n-1,

то квадратична формаf буде приведена до вигляду:

де .

Залишається показати, що .

Вихідна квадратична форма має всі головні мінори строго додатні, зокрема, . В новому вигляді ця форма виходить за допомогою послідовного застосування невиродженого лінійного перетворення змінної з дійсними коефіцієнтами, матриця якої має вигляд:

, .

Але , звідки .#

Зауваження. Нехай головні мінори набувають значень, які чергуються:  і т.д. (де  - головний мінор першого порядку,  - другого і т.д.). Тоді з відомої формули

виходить, що усі , тобто дана квадратична форма від’ємно-визначена.

Квадратичні форми, нормальний вигляд яких містить як додатні, так і від’ємні квадрати невідомих, називаютьсяневизначеними.

Приклад 1.З’ясувати, при яких значеннях параметра λ задана квадратична форма є додатно-визначеною.

Розв’язування.

Розглянемо матрицю квадратичної форми

.

Обчислимо головні мінори матриці:

, коли . Звідси

Приклад 2. З'ясувати, при яких значеннях параметра λ задана квадратична форма є додатно-визначеною.

Розв’язування.

; M1= 1 > 0       M2 =

Відповідь: -4/5 < λ < 0

Питання для самостійної роботи.

Ортогональні перетворення квадратичних форм. ([12], стор. 154-157)


 

А также другие работы, которые могут Вас заинтересовать

36236. Общие положения по применению системы «Кобра» 229 KB
  Классификация компьютерных вирусов Компьютерные вирусы классифицируются в соответствии со следующими признаками: 1 среда обитания: файловые вирусы; загрузочные вирусы заражающие компоненты системной области используемые при загрузке ОС; файловозагрузочные вирусы. 2 способ заражения среды обитания; 3 способ активизации: резидентные и нерезидентные вирусы; 4 способ проявления деструктивные действия или вызываемые эффекты: влияние на работу ПК; искажение программных файлов файлов с данными; форматирование диска или его части; замена...
36237. Цели, функции и задачи защиты информации в сетях ЭВМ 127 KB
  Методы цифровой подписи данных передаваемых в сети Механизм цифровой подписи реализуемый также криптографическими методами состоит из формирования подписи блока данных при передаче и проверки подписи в принятом блоке данных. Первый процесс заключается в формировании подписи по определенному алгоритму с использованием секретного ключа второй – в обратном преобразовании. Считается что для реализации цифровой подписи методы шифрования с открытыми ключами предпочтительнее традиционных методов шифрования. При наличии подходящего алгоритма...
36238. Оценка обычных программ 116.5 KB
  Это множество можно разделить на два подмножества: множество объектов и множество субъектов. Доступ – категория субъектнообъектной модели описывающая процесс выполнения операций субъектов над объектами. В защищенной КС всегда присутствует субъект выполняющий контроль операций субъектов над объектами. Для выполнения в защищенной КС операций над объектами необходима дополнительная информация и наличие содержащего ее объекта о разрешенных и запрещенных операциях субъектов с объектами.
36239. Структура моделей знаний: правила продукции. Примеры 41 KB
  Структура моделей знаний: правила продукции. Понятие продукционных правил. Для достижения цели используется некоторая совокупность фактов и способов их применения правил. На этих понятиях основан наиболее распространенный метод представления знаний правила продукции или продукционные правила.
36240. Структура моделей знаний: семантические сети. Примеры 43 KB
  Структура моделей знаний: семантические сети. Понятие семантической сети основано на древней и очень простой идее о том что память формируется через ассоциации между понятиями. Квиллиан предположил что наша способность понимать язык может быть охарактеризована некоторым множеством базовых понятий концептов Базовыми функциональными элементами семантической сети служит структура из двух компонентов узлов и связывающих их дуг. Узлы в семантической сети соответствуют объектам понятиям или событиям.
36241. Структура моделей знаний: фреймовые модели. Примеры 43 KB
  Структура моделей знаний: фреймовые модели. Термин фрейм был предложен Марвином Минским в 70е годы. В теории фреймов этот образ называют фреймом комнаты. В нем есть дырки незаполненные значения некоторых атрибутов например количество окон эти дырки называют слотами Таким образом можно дать определение фрейму как минимально возможному описанию сущности какого то явления события ситуации процесса или объекта.
36242. Формальная система в представлении знаний 36 KB
  Из множества формул выделяют подмножеств правильно построенных формул ППФ. определяется эффективная процедура позволяющая по данному выражению выяснять является ли оно ППФ в данной ФС. Выделено некоторое множество ППФ называемых аксиомами ФС. При этом должна иметься эффективная процедура позволяющая для произвольной ППФ решить является ли она аксиомой.
36243. Система нечетких рассуждений в представлении знаний 248 KB
  Они в свою очередь определены через некоторую базовую шкалу В и функцию принадлежности. Понятие принадлежности. Тогда х принадлежит А если существует функция: Основным отличием нечеткой логики от классической как явствует из названия является наличие не только двух классических состояний значений но и промежуточных: Функция принадлежности определяет субъективную степень уверенности эксперта в том что данное конкретное значение базовой шкалы соответствует определяемому нечеткому множеству. Методы получения функции принадлежности...
36244. Системы искусственного интеллекта. Понятия и определения. Архитектура, классификация моделей 38 KB
  В этой информационной модели окружающей среды реальные объекты их свойства и отношения между ними не только отображаются и запоминаются но и как это отмечено в данном определении интеллекта могут мысленно целенаправленно преобразовываться . При этом существенно то что формирование модели внешней среды происходит в процессе обучения на опыте и адаптации к разнообразным обстоятельствам . Под структурным подходом мы подразумеваем попытки построения ИИ путем моделирования структуры человеческого мозга. Основной моделируемой структурной...