77360

Параллельный рендеринг воксельной графики

Научная статья

Информатика, кибернетика и программирование

В данной статье описывается разработка средств распараллеливание воксельной графики используемой для представления больших объемов данных получаемых в результате компьютерного моделирования сложных процессов. Обычно данных представляются в виде 3х мерного массива. Затем вычисляется ближайшая точка пересечения этого луча с областью данных параллелограммом. После этого алгоритм движется по трёхмерному массиву данных с шагом в одну ячейку до попадания в не пустую точку.

Русский

2015-02-02

27.5 KB

2 чел.

Параллельный рендеринг
воксельной графики

И.О. Михайлов

Институт математики и механики УрО РАН, УрФУ

В данной статье описывается разработка средств распараллеливание воксельной графики, используемой для представления больших объемов данных, получаемых в результате компьютерного моделирования сложных процессов.

В самом общем случае воксельная графика предусматривает хранение объекта в виде набора(облака) точек. Обычно данных представляются в виде 3-х мерного массива. Одним из основных преимуществом воксельной графики по сравнению с полигональной является возможность продемонстрировать внутреннюю структуру объекта. А основным недостатком высокие требования по памяти и малое распространение специализированных аппаратных средств для расчёта графики.

Базовым алгоритмом рендеринга использованным в работе является трассировка лучей (точнее Ray casting). Этот алгоритм заключается в следующем из каждой точке изображения строится луч. Затем вычисляется ближайшая точка пересечения этого луча с областью данных(параллелограммом). После этого алгоритм движется по трёхмерному массиву данных с шагом в одну ячейку, до попадания в не пустую точку. Основным преимуществом данного метода является большие возможности распараллеливания (вплоть до каждой точки изображения), а основным недостатком большая вычислительная сложность.

Для корректного отображения данных с полупрозрачными ячейками необходимо модифицировать данный алгоритм. Вычисляется дальняя точка пересечения луча с областью данных, и движение по трёхмерному массиву осуществляется в обратном направлении.

В данной работе используются плотные октодеревевьев в виде набора 3х-мерных массивов. Первый из них в 8 раз меньше массив исходных данных, каждый последующий в 8 раз меньше предыдущего. В каждом элементе массива хранится количество не пустых ячеек в соответствующей области основного массива (с данными). Это даёт возможность быстро пропускать пустые участки при трассировке лучей. Этот подход даёт те же преимущества что и разряженные октодеревья, кроме экономии памяти, однако значительно упрощает доступ к отдельным вокселям и их модификацию. Алгоритм прямого хода эффективен за счёт пропуска уже заполненных точек, но не поддерживает прозрачность. Для корректного отображения полупрозрачных данных необходимо использовать алгоритм обратного хода.

Первые результаты были получены на многоядерном персональном компьютере. При этом использовалась технология OpenMP, для параллельного рендеринга точек изображения. Область данных была общая для всех потоков.

Область данных представляет собой 3-х мерный массив из 4-байтовых целых чисел, в котором ненулевые ячейки задают объект, а нулевые считаются пустыми. Не нулевые ячейки содержат информацию о цвете и прозрачности точек объекта. Возможно расширения до 8-байтовых целых чисел, для хранения вспомогательной информации. В текущей реализации используются кубические массивы со стороной равной степени двойки (от 128 до 512). Для ускорения работы строится набор вспомогательных массивов, хранящих информацию о группах пустых ячеек для быстрого их пропуска. Затем эксперименты были перенесены на суперкомпьютер Уран ИММ УрО РАН, где для реализации использовалась библиотека MPI. При этом узлы были разделены на несколько групп. Области данных внутри одной группы дублировались. Сперва производился независимый рендеринг изображений в каждой группе, а затем полученные изображения совмещались в одно с учётом буфера глубины.

Благодаря тому, что окончательное изображение получает сложением вспомогательных с учётом буфера глубины, есть возможность использовать алгоритмы отличные от трассировки лучей. Например некоторые данные возможно эффективней хранить в виде облака точек, с последующим проецированием на плоскость экрана. Описанный выше алгоритм можно использовать в средах виртуальной реальности.

Работа выполнена в рамках программы Президиума РАН № 18 "Алгоритмы и математическое обеспечение для вычислительных систем сверхвысокой производительности" при поддержке УрО РАН (проект 12-П-1-1034).


 

А также другие работы, которые могут Вас заинтересовать

42306. Исследование и разработка некоторых графических алгоритмов 6.69 MB
  Представлен алгоритм визуализации мелких деталей, основанный на трассировке в карте высот, который отличается от других подобных алгоритмов наличием отражений и использованием нового метода вычисления градиентов текстурных координат. В созданном алгоритме локальной трассировки комбинируется классическая трассировка лучей и метод построения отражений
42307. Дослідження розімкнутої лінійної системи за допомогою середовища MATLAВ 123 KB
  Він повинен включати назва предмета номер і назва лабораторної роботи прізвище та ініціали авторів номер групи прізвище та ініціали викладача номер варіанта короткий опис досліджуваної системи результати виконання всіх пунктів інструкції які виділені сірим фоном див. Визначте смугу пропускання системи найменшу частоту на якій АЧХ стає менше ніж дБ. Побудуйте модель системи в просторі стану.
42308. Хранимые процедуры в MySQL 94 KB
  Введение Хранимые процедуры один из наиболее мощных инструментов предлагаемых разработчикам приложений баз данных MySQL для реализации бизнеслогики. Хранимые процедуры англ stoied proceduies позволяют реализовать значительную часть логики приложения на уровне базы данных и таким образом повысить производительность всего приложения централизовать обработку данных и уменьшить количество кода необходимого для выполнения поставленных задач. Помимо этих широко известных преимуществ использования хранимых процедур общих для большинства...
42309. ОПРЕДЛЕНИЕ УСКОРЕНИЯ СИЛЫ ТЯЖЕСТИ С ПОМОЩЬЮ УНИВЕРСАЛЬНОГО МАЯТНИКА 246 KB
  Пусть – длина нити маятника т – его масса. Если пренебречь силами сопротивления движению то на тело маятника действуют две силы: сила тяжести и натяжение нити . В проекции на направление касательной уравнение движения маятника запишется так: 1 Знак минус возникает потому что проекция силы противоположна направлению отклонения...
42310. ОПРЕДЕЛЕНИЕ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК ОКРАШЕННЫХ РАСТВОРОВ И РАССЕИВАЮЩИХ СРЕД 995.5 KB
  Изучение особенностей прохождения света через оптически однородные и неоднородные среды. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ При прохождении света через среды и через растворы в частности происходит уменьшение его интенсивности вследствие взаимодействия световой волны с частицами вещества. Такое ослабление света называется экстинкцией. Экстинция обусловлена двумя причинами: поглощением и рассеянием света.
42311. ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ РАСТВОРОВ С ПОМОЩЬЮ КРУГОВОГО ПОЛЯРИМЕТРА 301 KB
  Исследование процесса поляризации света при прохождении его через растворы определение концентрации оптически активного раствора по величине угла поворота плоскости поляризации. Если колебания светового вектора происходят только в одной проходящей через луч плоскости свет называется плоско или линейно поляризованным. Это приборы которые свободно пропускают колебания параллельные плоскости поляризатора и полностью или частично задерживают колебания перпендикулярные его плоскости. Поляризатор частично...
42312. ОПРЕДЕЛЕНИЕ КАЧЕСТВА ОБРАБОТКИ ПОВЕРХНОСТИ С ПОМОЩЬЮ МИКРОИНТЕРФЕРОМЕТРА 672.5 KB
  Теория и опыт неопровержимо свидетельствуют что свет представляет собой электромагнитные волны диапазона 040106 – 076106 метров. Электромагнитные волны – поперечные характеризуются колебанием двух векторов: напряженности электрического поля и магнитной индукции . Колебания электрической и магнитной составляющих поля световой волны происходят в одинаковых фазах во взаимно перпендикулярных плоскостях. Как показывает исследование векторы и единичный вектор направления вдоль которого происходит распространение волны образуют...
42313. ОПРЕДЕЛЕНИЕ ГРАНИЦ СПЕКТРА БЕЛОГО СВЕТА С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ 1.49 MB
  Волновая поверхность падающей волны плоскость щели и экран параллельны друг другу. Поскольку щель бесконечна картина наблюдаемая в любой плоскости перпендикулярной к щели будет одинакова. Разобьем открытую часть волновой поверхности на параллельные краям щели элементарные зоны ширины . Ее можно найти проинтегрировав по всей ширине щели : .
42314. ИЗУЧЕНИЕ ДИСПЕРСИИ СВЕТА 735.5 KB
  Наблюдение дисперсии света определение зависимости показателя преломления от длины волны светового излучения для конкретного вещества. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ Одним из наиболее давно известных человеку оптических эффектов является преломление света заключающееся в том что при переходе через границу двух сред луч света скачком меняет свое направление как бы претерпевает излом. Преломление света характеризуется относительным показателем преломления.