77372

Микроядро RiDE.C

Научная статья

Информатика, кибернетика и программирование

Здесь разумно начать с описания микроядра RiDE. Многие особенности микроядра RiDE.C определяет базовый протокол обмена данными между задачами RiDE.

Русский

2015-02-02

19.5 KB

0 чел.

Микроядро RiDE.C

М.О. Бахтерев

ИММ УрО РАН, Екатеринбург

Ранее была обоснована необходимость разработки распределённой ОС, новизна которой должна заключаться в её интерфейсе для прикладного программирования (API), позволяющим проще и эффективнее задействовать возможности современных распределённых неоднородных вычислительных систем. Основные принципы построения подобной ОС и базовые элементы API уже разработаны,  что позволяет приступить к представлению программных компонентов, призванных составить ОС. Здесь разумно начать с описания микроядра (RiDE.C), так как его организация отражает основные черты ОС.

Распределённые системы (DS) можно строить в рамках традиционных ОС с монолитным ядром (макроядром). Однако при таком подходе усложняется общая структура системы. Ведь, распределённая ОС должна обеспечивать приложениям доступ к ресурсам способом, не зависящим от взаимного расположения приложений и ресурсов на узлах системы. А для достижения этого в архитектурах с макроядром приходится использовать ресурс через транслирующий сервер. Такой сервер при помощи сетевой службы ядра обеспечивает связность с отдалёнными узлами системы: он принимает запросы к ресурсу извне, транслирует (трансляция TQ) их в вызовы службе ядра, поддерживающий ресурс, транслирует результаты вызовов для формирования ответов вовне (TR), и отправляет эти ответы.

Микроядерная же архитектура предполагает организацию управляющих ресурсами служб в виде серверов на уровне пользователя, доступ к которым осуществляется через механизмы межпроцессного взаимодействия (IPC) и стека работающих над IPC протоколов. Традиционно, на этом основании делается вывод о неэффективности подобных архитектур, так как для выполнения запросов приложения требуется переключать контексты задач. Но работа в DS через транслирующий сервер в макроядерной архитектуре тоже требует переключения контекстов, даже тогда, когда ресурс и работающее с ним приложение находятся на одном узле. А необходимость разрабатывать дополнительный протокол и транслировать его (TR, TQ) делает решение с макроядром для распределённой ОС менее эффективным и более громоздким.

Многие особенности микроядра RiDE.C определяет базовый протокол обмена данными между задачами – RiDE.P. Он описывает взаимодействие через области общей памяти, позволяя прозрачно для приложений транслировать акты взаимодействия по сети при помощи агентов, работающих вне микроядра. От микроядра протокол RiDE.P требует поддержки только лишь простого примитива синхронизации – r-ñåìàôîðà (однонаправленный кольцевой, а не со стековым поведением счётчика, point-to-point семафор), операции над которым RiDE.P также  транслирует через агенты (свойство ST).

Опишем некоторые характеристики микроядра RiDE.C в следующем виде.

1. Все выполняемые RiDE.C функции работают по алгоритмам с временной сложность.ю O(1). Даже подсистема работы со временем, алгоритмы для которой в традиционных ОС имеют сложность O(n*n) или O(n*log(n)), n – число используемых программных таймеров.

2. Архитектура разрабатываемой ОС предполагает вынесение функции балансировки нагрузки в процесс уровня пользователя. В RiDE.С планировщик не решает задачу балансировки, так как решать её качественно можно только с учётом особенностей конкретного приложения.

3. Планировщик микроядра RiDE.C разработан для создания хороших условий исполнения как для коротких интерактивных задач (в DS это задачи, управляющие обменами данными), так и для задач с большим временем счета. Оптимизируя работу первых, планировщик отслеживает группы задач, занимающих процессор на долгое время и понижает их уровень интерактивности. Поддерживая выполнение вторых, планировщик программирует таймер, чтобы обеспечивать вычислительным задачам длинные интервалы непрерывной работы. Во многих традиционных ОС оба типа задач прерываются одинаково часто, а пользователь может получить несправедливо много процессорного времени для своего приложения, так как анализируется только индивидуальное поведение составляющих это приложение задач.

4. Лишь два действия с r-ñåìàôîðàìè являются в API RiDE.C системными вызовами. Доступ к остальной функциональности в API определён через протокол над RiDE.P, что вместе со свойством ST позволяет гибко регулировать доступ к микроядру. Стандартными для разрабатываемой ОС могут быть как задачи, работающие с микроядром на отдалённом узле системы, так и задачи, не имеющие контроля над микроядром, работающим на локальном для них процессоре. Такая возможность – важный элемент в предложенной ранее dataflow модели параллельного программирования для неоднородных DS.

5. API микроядра RiDE.C предписывает управлять размещением и настройкой структур данных для микроядра во внешнем менеджере и начинать их использование в самом микроядре после простой регистрации. Такие функции как ?создать задачу? или ?создать r-ñåìàôîð? отсутствуют, так как они требуют работы с памятью на уровне микроядра, приводя к сложностям в системах с памятью виртуальной. Такой подход не снижает общую безопасность системы (менеджер памяти всегда является доверенным компонентом), но позволяет сделать микроядро проще, и, что более важно для больших вычислений, открывает доступ к состояниям задач и связывающих их r-ñåìàôîðîâ с уровня пользователя. В свою очередь, это ведёт к более простой реализации механизмов ортогональной устойчивости: контрольные точки, миграция задач по узлами DS, а также позволяет запускать специализированные под конкретные приложения балансировщики нагрузки на уровне пользователя.

В настоящее время реализована однопроцессорная версия микроядра. Ведётся работа над драйверами, обеспечивающими взаимодействие между задачами в многопроцессорных системах, а также над драйверами, позволяющими работать с современными аппаратными таймерами.


 

А также другие работы, которые могут Вас заинтересовать

38895. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ДИПЛОМНЫХ РАБОТ 469 KB
  Присяжнюк В методических рекомендациях раскрываются цели и задачи дипломной работы определяются обязанности студентов и научных руководителей определяется порядок ее выполнения описываются требования к содержанию и оформлению. Методические указания предназначены в помощь студентам специальности при выполнении дипломной работы а также преподавателям техникума. Цели и задачи выпускной квалификационной дипломной работы. Требования к структуре и содержанию выпускной квалификационной дипломной работы.
38897. ПУТИ ПОВЫШЕНИЯ ПРОДУКТИВНОСТИ ОТРАСЛИ КОРМОПРОИЗВОДСТВА В СПК «КАТП «ДЖАНКОЙ» ДЖАНКОЙСКОГО РАЙОНА АР КРЫМ 350.5 KB
  Одной из основных проблем животноводства остается производство кормов. При этом их продуктивность снизилась: надой на 1 фуражную корову упал с 3720 до 2847 кг молока то есть его производство уменьшилось более чем в 38 раза Для поднятия животноводства хозяйства необходимо совершенствовать систему кормопроизводства СПК КАТП Джанкой обратив внимание на поиск путей удешевления кормов так как именно их высокая себестоимость делает очень дорогой продукцию животноводства хозяйства и в конечном счете убыточной. Одной из основных причин...
38898. Освещение ЛГБТ-проблематики в современном Рунете 355 KB
  ДИПЛОМНАЯ РАБОТА на тему Освещение ЛГБТ проблематики в современном Рунете. ЛГБТ проблематика как одно из тематических направлений современных СМИ. Актуальность ЛГБТ проблематике в современном социуме 1. Правовые и профессионально-этические проблемы в освещении ЛГБТ проблематики.
38899. Специфика работы с ЛГБТ-проблематикой в рунете 334.5 KB
  Журналистика ДИПЛОМНАЯ РАБОТА на тему Специфика работы с ЛГБТпроблематикой в рунете. ЛГБТпроблематика как одно из тематических направлений современных СМИ. Обоснованность обращения к ЛГБТпроблематике в журналистском и публицистическом научном дискурсе. Правовая и профессиональноэтическая проблемы освещения ЛГБТпроблематики в СМИ.
38900. Міжпроцесна взаємодія в локальній обчислювальній мережі 364 KB
  Переваги використання локальних обчислювальної мережі. Визначення локальної обчислювальної мережі5 1. Модульна структура локальної мережі. Протокол Internet забезпечує при необхідності також фрагментацію і збір датаграм для передачі даних через мережі з малим розміром пакетів.
38901. УРОКИ-ЭКСКУРСИИ ПО МАТЕМАТИКЕ КАК СРЕДСТВО ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА МЛАДШИХ ШКОЛЬНИКОВ 560 KB
  Информатика УРОКИ-ЭКСКУРСИИ ПО МАТЕМАТИКЕ КАК СРЕДСТВО ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА МЛАДШИХ ШКОЛЬНИКОВ ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА Студент Пахтаев Александр Остапович гр. Теоретические основы формирования познавательного интереса младших школьников 1. Особенности познавательного интереса младших школьников 10 1. Роль и значение нестандартных уроков по математике в формировании познавательного интереса младших школьников 25 1.
38902. ПОНЯТТЯ, ВИДИ І ЗНАЧЕННЯ НАСЛІДКІВ ЗЛОЧИНУ 172 KB
  Правове забезпечення охорони прав і свобод людини і громадянина, власності, громадського порядку та громадської безпеки, довкілля, конституційного устрою України від злочинних посягань, забезпечення миру і безпеки людства, а також запобігання злочинам
38903. Исследование законов движения тел по наклонной плоскости 346.5 KB
  Цель работы: проверка законов сохранения энергии для поступательного и вращательного движения тел по наклонной плоскости с учетом силы трения.1 Сила трения Силы трения появляются при перемещении соприкасающихся тел или их частей друг относительно друга. Трение возникающее при относительном перемещении двух соприкасающихся тел называется внешним; трение между частями одного и того же сплошного тела например жидкости или газа носит название внутреннего трения. Сила и есть сила трения покоя.