77686

ОРГАНИЗАЦИЯ ЖЕСТКИХ ДИСКОВ

Реферат

Информатика, кибернетика и программирование

Функции BIOS для работы с жесткими дисками. Проблемы BIOS при работе с большими дисками. Структурная схема жесткого диска. Вдоль каждой поверхности каждого диска синхронно перемещаются магнитные головки обеспечивающая чтение и запись информации.

Русский

2015-02-05

1.12 MB

18 чел.

ОРГАНИЗАЦИЯ ЖЕСТКИХ ДИСКОВ

СОДЕРЖАНИЕ

 

[1] Введение

[2] 1. Организация жестких дисков

[3] 1.1. Блочные устройства

[4] 1.2. Устройство жестких дисков

[4.0.1] 1.2.1. Физические координаты НЖМД: цилиндры, головки и секторы

[4.0.2] 1.2.2. Логические блоки

[4.0.3] 1.2.3. Функции BIOS для работы с жесткими дисками

[4.0.4] 1.2.4. Проблемы BIOS при работе с большими дисками

[5] 2.3. Структурная схема жесткого диска

[5.0.1] 1.3.1. Структурная схема физического устройства

[5.0.2] 1.3.2. Иерархия уровней абстракции представления информации

[6] 1.4. Форматирование жестких дисков

[6.0.1] 1.4.1. Физическое форматирование (низкоуровневое)

[6.0.2] 1.4.2. Логическое форматирование

[7] 1.5. Разделы

[7.0.1] 1.5.1. Первичные разделы

[7.0.2] 1.5.2. Дополнительные (расширенные) разделы

[7.0.3] 1.5.3. Подразделы дополнительного раздела

[7.0.4] 1.5.4. Изменение размеров разделов.

[8] 1.6. Файловые системы

[8.0.1] 1.6.1. FAT16

[8.0.2] 1.6.2. FAT32

[8.0.3] 1.6.3. NTFS

[8.0.4] 1.6.4. HPFS

[8.0.5] 1.6.5. Ext2fs

[9] 1.7. Монтирование файловых систем

[9.0.1] 1.7.1. Порядок назначения имен дисков

[10] 1.8. Порядок загрузки операционной системы  

[10.0.1] 1.8.1. Главная загрузочная запись (MBR)

[10.0.2] 1.8.2. Загрузочный блок ОС (BR)

[11] 1.9. Заключение


Введение

Современный жесткий диск является довольно сложным устройством. Современные тенденции к увеличению скорости чтения и записи информации, увеличения плотности записи, а также выполнение повышенных требований к надежности, энергопотреблению, шумам достигаются усложнением технологий организации хранения информации и технологии изготовления НЖМД.

1. Организация жестких дисков

1.1. Блочные устройства 

Любое устройство для хранения больших объемов информации с возможностью произвольного доступа обладает одной характерной особенностью: время поиска информации растет с увеличением емкости ее носителя. В силу этого обстоятельства каждую операцию доступа к данным удобно разбить на два этапа 

Поиск места, где информация находится на носителе

Доступ к информации

Если этап поиска осуществляется с помощью механического привода, то время его выполнения превосходит время считывания или записи одного байта на несколько порядков.

Поэтому для повышения эффективности работы устройства делают блочными: на каждую операцию поиска приходится чтение или запись достаточно большой порции данных, которую называют блоком. Таким образом, доступ к информации осуществляется произвольно адресуемыми блоками, а сами устройства называются блочными. Жесткие диски представляют собой одну из разновидностей блочных устройств. Размер блока информации со временем стал стандартным для всех жестких дисков и составляет 512 байт. Например, количество блоков на диске размером 40Гб составляет порядка 80 миллионов.

1.2. Устройство жестких дисков 

Современный жесткий диск состоит из одного или нескольких дисков с магнитным покрытием, установленных на вращающемся шпинделе. Вдоль каждой поверхности каждого диска синхронно перемещаются магнитные головки, обеспечивающая чтение и запись информации. Вся эта система управляется встроенной электроникой, обеспечивающей эффективную передачу информации между магнитным веществом и памятью компьютера.

1.2.1. Физические координаты НЖМД: цилиндры, головки и секторы 

На физическом уровне диск имеет три степени свободы для указания того места (три координаты), где информация будет записываться или считываться:

Цилиндр. При вращении дисков с магнитным покрытием головки двигаются по окружности относительно пластин. При этом все они находятся на определенном расстоянии от центра диска. Совокупность этих круглых траекторий головок на всех поверхностях дисков, находящихся на одном удалении от центра, называют цилиндром. Поскольку магнитные головки жестко связаны друг с другом, то они перемещаются синхронно и одновременно находятся в одном и том же цилиндре. Для установки головок на заданный цилиндр необходимо привести в движение блок головок, для чего требуется время порядка 1.20 миллисекунд.  

Головка. Несколько поверхностей обеспечивают дополнительную возможность выбора. Для перехода от одной головке к другой не требуется никакого времени, так как при этом переключение осуществляется без привлечения механических узлов. 

Сектор. Один блок информации является относительно небольшой порцией данных, которая территориально соответствует небольшой дуге окружности. Если смотреть из центра, то такие дуги размещаются в одном угловом секторе. Строго говоря, на современных дисках это не так, поскольку длины окружностей возрастают с увеличением радиуса, а размер одного бита всюду одинаков. Таким образом, на длинных дорожках помещается больше битов, а, стало быть, больше блоков данных. Для выбора сектора на дорожке двигать головки не нужно, зато нужно ждать, когда пластины повернутся так, чтобы адресная метка сектора подошла к головкам чтения/записи. При скорости вращения диска порядка 5.7 тысяч оборотов в минуту время ожидания сектора оказывается порядка 8-10 миллисекунд. Это время даже больше времени перемещения головок, однако, после их перемещения метку сектора все равно приходится искать, так что смена цилиндра является самой длинной операцией при поиске информации. 

Первые жесткие диски обладали относительно небольшим числом цилиндров, головок и секторов и, вдобавок, не имели такого умного контроллера как сегодняшние. Поэтому адресация блоков у них производилась указанием трех чисел, номера цилиндра, головки и сектора, и эти номера соответствовали физической организации данных. Со временем это стало не так. На разных цилиндрах находится разное число секторов. Контроллеры современных дисков сами определяю некоторую виртуальную геометрию диска, которую сообщают компьютеру. Поэтому ценность такого трехкоординатного указания адреса теряется, и такой способ постепенно отмирает, оставляя лишь проблемы с совместимостью.

Довольно часто можно слышать как термин блок, так и термин сектор. И то, и другое указывает порцию данных размером 512 байт, если речь идет о жестком диске. Однако, в то время, как слово «блок» отражает логическую структуру данных на диске, слово «сектор» отражает лишь часть физической структуры дисков, которая со временем все больше скрывается от нас в недрах встроенного контроллера. Отсюда следует вывод, что более правильно пользоваться словом блок.

1.2.2. Логические блоки 

Все современные жесткие диски перешли на новый, более простой в использовании вид адресации - линейный. Каждый блок характеризуется единственным числом, своим номером. Современный стандарт ATA-5 отводит для хранения номеров диска 28 бит, что позволяет адресовать 268435456 блоков, или примерно 137.4 Гигабайт.

Интерпретация номера является скрытой во встроенном контроллере жесткого диска. Несмотря на это, существует некоторое общепринятое для производителей жестких дисков правило, по которому логический номер блока переводится в номера цилиндра, головки и сектора:

<блок> = (<цилиндр> * ЧИСЛО_ГОЛОВОК + <головка>) * ЧИСЛО_СЕКТОРОВ + <сектор> - 1

ЧИСЛО_ГОЛОВОК  Количество головок жесткого диска, возвращаемое BIOS

ЧИСЛО_СЕКТОРОВ  Количество секторов жесткого диска, возвращаемое BIOS

<сектор>  Номер сектора, из диапазона [ 1 . ЧИСЛО_СЕКТОРОВ ]

<головка>  Номер головки, из диапазона [ 0 . ЧИСЛО_ГОЛОВОК-1 ]

<цилиндр>  Номер цилиндра, из диапазона [ 0 . ЧИСЛО_ЦИЛИНДРОВ-1 ]

Последовательность изменение координат размещения информации при линейной адресации: при увеличении номера блока в первую очередь меняется номер сектора, потом номер головки, потом номер цилиндра. Отсюда следует, что цилиндры являются самыми большими областями смежных блоков данных. По этой причине цилиндры являются границами, на которые выравниваются разделы при создании их большинством стандартных инструментов (fdisk).

Несмотря на то, что линейная адресация является более прогрессивной, она привела к появлению проблем с совместимостью, которые длятся уже несколько лет. В основном, эти проблемы касаются использования новых жестких дисков со старыми материнскими платами, а также различных установок BIOS, о которых будет рассказано ниже.

1.2.3. Функции BIOS для работы с жесткими дисками 

Базовая система ввода вывода (BIOS) предоставляет программам возможность обмена информацией с жесткими дисками. Для этого имеется специальное программное прерывание, INT 13h.

Основным достоинством BIOS является то, что программам предоставляется стандартный интерфейс взаимодействия с жесткими дисками любого типа. В то время, когда проектировались первые версии BIOS, жесткие диски еще не были так же хорошо стандартизованы, как сегодня, поэтому реализация функций ввода/вывода предполагалась различной. Загрузка операционных систем (ОС) происходит при непосредственном участии BIOS на начальном этапе и по этой причине загрузка любой ОС начинается стандартным образом. В этом тоже сказывается положительная роль BIOS.

Основными недостатками BIOS в отношении работы с дисками является то, что эти функции:

1. Слишком медленны. BIOS большинства компьютеров очень много времени тратят на выполнение повторных действий. Кроме того, они не всегда производят расширенную диагностику жестких дисков, в результате чего работа с жесткими дисками ведется не в самых оптимальных с точки зрения быстродействия режимах. Так, при современных скоростях чтения записи порядка 10 и более Мегабайт в секунду, скорость чтения через BIOS составляет всего 2-2.5Мб/c.

2. Строго последовательны. Доступ к одному диску с помощью BIOS может быть осуществлен лишь после завершения доступа к другому, даже если сами устройства могут функционировать независимо, поэтому эффективность системы снижется.

3. Имеют лишь 20-разрядную адресацию памяти. Функции BIOS изначально разработаны для процессоров Intel 8086, которые могли адресовать лишь 1 Мегабайт памяти. Таким образом, BIOS не может полностью реализовать возможности современного компьютера.

4. Имеют ограничения на адресацию блоков диска, которая приводит к проблемам с загрузкой ОС, расположенных за границей 8Гб. Современные версии BIOS имеют расширение, которое помогает решить эту проблему для современных ОС. Однако, это расширение несовместимо со старыми функциями BIOS, поэтому старые операционные системы, такие как DOS, которые пользуются старыми интерфейсами BIOS, не смогли и не смогут переступить границы в 8GB.

Преодоление этих недостатков в современных ОС осуществляется с помощью собственных драйверов для работы с жесткими дисками. Однако на начальном этапе, когда ядро ОС еще не загружено в память и не имеет драйверов для работы с дисками, BIOS предоставляет единственный унифицированный способ загрузить систему.

Функции BIOS предоставляют доступ к дискам путем назначения им уникальных номеров. Для номера диска отводится 1 байт, который содержит число в диапазоне 80-FFh (числам 00h-7Fh соответствуют дискеты). Внутри своих настроек BIOS именует диски буквами C, D, E., которые соответствуют номерам 80h, 81h, 82h, . Эти буквы соответствуют физическим дискам, и не следует их путать с буквами логических дисков, наблюдаемыми из операционных систем.

1.2.4. Проблемы BIOS при работе с большими дисками 

Стандартные функции BIOS работают с диском исключительно в терминах цилиндра, головки и сектора. Все параметры для функций чтения и записи передаются в регистрах процессора, причем

-На номер цилиндра отводится 10 бит (1024 цилиндра).

-На номер головки отводится 8 бит (256 головок).

-На номер сектора отводится 6 бит (63 сектора).

Первый стандарт ATA на встроенные контроллеры жестких дисков определил

следующее диапазоны параметров жестких дисков:

-На номер цилиндра отводится 16 бит (65536 цилиндров).

-На номер головки отводится 4 бита (16 головок).

-На номер сектора отводится 6 бит (64 сектора).

В результате совместного применения этих требований емкость диска, адресуемая средствами BIOS, ограничивается размером 504 Мб. С появлением дисков большего размера возникли проблемы с использованием дискового пространства. Для решения этих проблем в BIOS были реализованы разные режимы трансляции дисковых адресов.

Режим NORMAL. Это собственно и есть режим, в котором видно всего 504 Мб. В этом режиме все величины номера цилиндра, головки и сектора без изменений передаются в контроллер жесткого диска. Использование этого режима невозможно с новыми дисками п по причине недоступности большей части информации.

Режим LARGE. Этот режим представляет собой усовершенствованный режим NORMAL. BIOS производит преобразование головок и цилиндров, тем самым, изменяя логическую геометрию диска. Поскольку количество головок, доступное BIOS превосходит максимально возможное количество головок самого диска в 16 раз, то BIOS уменьшает число логических цилиндров в 2,4,8 раз и одновременно с этим увеличивает число логических головок в такое же количество раз. Коэффициент перевода он запоминает и при каждом обращении к диску непосредственно перед формированием команды контроллеру он делает обратное преобразование. Таким образом, с помощью преобразования удается адресовать большее количество блоков диска.

Режим LBA. В этом режиме в контроллер посылается линейный номер блока. Благодаря этому BIOS не должен подстраивать свою логическую геометрию под некоторую начальную геометрию диска, ее просто нет. Поэтому BIOS просто назначает число головок равным 255, то есть максимально возможному значению, что позволяет адресовать до 8Гб.

Разные режимы, вообще говоря, несовместимы между собой, если программное обеспечение привязывается к количеству секторов на дорожке и количеству головок. Только линейная адресация остается универсальной. По этим причинам крайне не рекомендуется менять режим диска в настройках BIOS после того, как диск отформатирован. В противном случае он может просто не прочитаться.

2.3. Структурная схема жесткого диска 

Для более эффективного использования жесткого диска нужно представлять себе его внутреннюю структуру, наиболее полезными аспектами которой являются физическая организация функциональных блоков диска и уровни абстракции при представлении данных.

Если при размещении операционных систем на диске учитывать особенности его  структуры, то можно добиться более высокой производительности файловой системы, и, как следствие, всей системы в целом.

1.3.1. Структурная схема физического устройства 

Структурная схема жесткого диска показана на рисунке ниже. Центральный процессор системы общается с жестким диском через стандартные интерфейсы подключения скоростных периферийных устройств. В современных жестких дисках все схемы управления процессами записи и считывания информации сосредоточены во встроенном котроллере жесткого диска. Процессор передает ему команды на осуществления операций ввода/вывода, а контроллер сообщает ему об их выполнении путем выдачи прерывания и возвращения статуса завершения операции.

Встроенный контроллер полностью управляет перемещением головок, их парковкой, и процессами записи информации непосредственно на магнитные диски. Однако сами диски обладают достаточно плохими динамическими характеристиками, поскольку приводы головок и шпиндель являются механическими частями, то есть очень медленными по сравнению с электроникой. Перед тем, как начинается процесс записи или чтения на магнитную пластину, проходит довольно большое время ожидания, пока магнитные головки окажутся над местом записи. Это время может на два три порядка превосходит времена самой записи, поэтому все современные диски оснащаются специальной буферной памятью.

Задачи буферной памяти. Обладая высокой пропускной способностью и достаточной вместимостью, она способна моментально поглотить внезапные и редкие записи на диск. При позиционировании головок на новой дорожке современные контроллеры часто начинают предварительное считывание всей дорожки в буферную память, что позволяет не дожидаться медленной механики при последующих считываниях, так как обычно вероятнее всего считывается несколько смежных блоков диска. Кроме сказанного, эта память может служить в качестве обычной дисковой кэш-памяти, которая выделяется из объема оперативной памяти для ускорения обращения к диску при многократном доступе к одним и тем же файлам.

Рис. 1 Структурная схема жесткого диска

Основным фактором, серьезно снижающим быстродействие жесткого диска, является позиционирование головок. Этот процесс менее всего загружает центральный процессор.

Загрузка процессора при потоковом считывании без позиционирования выше чем с  позиционированием. Обмен информацией ослабевает из-за позиционирования на два-три порядка.  Однако, несмотря на разгрузку процессора, в большинстве приложений это приводит лишь к дополнительному ожиданию данных. Поэтому логично стремиться к такой организации информации на жестких дисках, чтобы позиционирований требовалось как можно меньше.

Дорожки магнитного диска имеют разную длину, в то время как размер одного бита информации на магнитном диске имеет длину постоянную. Линейная скорость вращения магнитных пластин также отличается на разных дорожках. Таким образом, на начальных дорожках, расположенных дальше от центра вращения диска, можно расположить больше блоков, чем на конечных, и при этом скорость считывания этих блоков будет самой высокой.

По этой же причине на начальных дорожках реже требуется позиционирование. В результате этого, средняя производительность диска при работе с начальной его областью будет выше, чем с остальными, поэтому более выгодно размещать на этих дорожках самые прихотливые в смысле быстродействия данные, например, раздел для свопинга, раздел с часто вызываемыми программами ОС и пр.

1.3.2. Иерархия уровней абстракции представления информации 

По мере развития операционных систем и носителей информации сложилась многоуровневая система организации пользовательских данных. Это обусловлено введением открытых стандартов на контроллеры жестких дисков и их протоколы взаимодействия с компьютером, усложнением структуры самих данных, появлением доступной технологии RAID и другими причинами. В данном разделе приводится информация о различных уровнях абстракции.

Схема уровней приведена на Рис.2 ниже.

Уровень 1 представляет собой сырое дисковое пространство, которое содержит избыточное количество блоков данных и допускает наличие неисправных. Это блоки, размещаемые прямо на магнитном носителе. На этом уровне они имеют лишь свои адресные метки, но их сквозная нумерация еще невозможна ввиду того, что часть блоков может быть неисправна. Работа на этом уровне полностью скрыта в контроллере жесткого диска и недоступна пользователю.

Уровень 2  представляет собой адресуемое пространство блоков данных. На этом уровне емкость диска соответствует заявляемой в паспорте устройства емкости носителя. Адресуемое пространство блоков уже не содержит неисправных блоков, поэтому блоки имеют уникальные линейные номера. Эти номера указываются контроллеру жесткого диска для операций чтения-записи. Обычно адресуемая емкость диска составляет 70-90% его сырой емкости, посчитанной по площади пластины и плотности хранения информации.

Уровень 3 представляет собой адресное пространство жесткого диска, разбитое на непересекающиеся разделы (partitions). Разделы полностью подобны целому диску в том, что они состоят из смежных блоков. Благодаря такой организации для описания раздела достаточно указания начала раздела и его длины в блоках.

Разбиение диска на разделы осуществляется программно и описывается с помощью таблицы разделов, располагаемой в первом блоке жесткого диска. Разделы на данном уровне являются настоящими, физическими разделами, их адреса являются адресами на физическом устройстве.

Уровень 4  содержит виртуальные разделы. Виртуальные разделы обобщают идею раздела о непрерывном адресном пространстве, но могут строиться из нескольких физических разделов одного или нескольких физических дисков. В операционной системе такие разделы легко реализуются с помощью простого фильтрующего уровня, который по логическому адресу блока в виртуальном разделе вычисляет номер блока и диска, к которому на самом деле происходит обращение. В простых настольных системах  этот уровень попросту отсутствует, (то есть все виртуальные разделы всегда тождественны физическим разделам уровня 3), но в системах с применением технологии RAID виртуальные разделы позволяют относительно дешевыми средствами преодолеть ограничения отдельных устройств по скорости обращения и надежности хранения информации.

Уровень 5  содержит файловые системы, размещенные в разделах. Практически во всех случаях раздел содержат ровно одну файловую систему. Исключение составляют, пожалуй, лишь раздел свопинга, не имеющий файловой системы вообще, и расширенный раздел, который может содержать несколько файловых систем. Первые два уровня . аппаратные, они недоступны пользователю для изменения. Остальные уровни допускают программную настройку.

Рис. .2 Многоуровневая организация жестких дисков

1.4. Форматирование жестких дисков 

Для организации хранении информации существует несколько уровней абстракции - разметки диска (форматированием). Отличают физическое и логическое форматирование. 

1.4.1. Физическое форматирование (низкоуровневое) 

Физическое форматирование происходит на первых двух уровнях дисковой иерархии, описанной в разделе 2.3.2, и заключается в создании на диске адресных меток секторов, расстановке контрольных сумм и специальных синхронизирующих заполнителей между секторами, чтобы сам контроллер мог разобраться в потоке битов, приходящих с диска. Пользователям обычно нет необходимости заниматься форматированием на низком уровне, поскольку эту задачу выполняют производители. Потребность в низкоуровневом форматировании при правильной эксплуатации диска вообще не должна возникать. Однако, из-за возможной разбалансировки головок возможна потеря информации, и тогда низкоуровневое форматирование способно вернуть диску емкость.

Емкость современных дисков, а соответственно и плотность записи, настолько велики, что очень трудно найти идеальную магнитную пластину, в которой бы не было дефектов. Но даже если такая пластина нашлась бы, в процессе ее эксплуатации дефекты могут возникнуть. Изготовить пластину большей емкости гораздо проще, чем изготовить пластину без дефектов. По этой причине современные диски имеют встроенные таблицы переадресации блоков и специальный список резервных блоков. Резервные блоки форматируются так же, как и обычные, но не имеют явного адреса для конечного пользователя компьютера. Если интегрированный в диск контроллер обнаруживает ошибку при записи некоторого блока, то он переадресует его на новое место, выбираемое из списка резерва. При этом резервный блок получает номер того блока, который вышел из строя.

Контроллеры современных жестких дисков поддерживают технологию SMART, суть которой состоит в следующем. Контроллер ведет учет количеству переадресованных блоков и количеству оборотов диска, сделанных с момента его пуска. Поскольку диск вращается с постоянной скоростью, то количество оборотов является единицей измерения дискового времени (встроенных часов у диска нет). На основе этих данных можно  оценивать скорость исчерпания резерва и делать прогнозы о моменте выхода диска из строя. Таким образом, диск позволяет интеллектуально контролировать наработку на отказ. Операционная система может отслеживать динамику изменения параметров жесткого диска и предупредить пользователя о выходе диска из строя заблаговременно, когда информацию еще можно спасти.

Хотя использование резервных блоков улучшает характеристики диска, нужно помнить, что резервный блок будет задействован только, когда контроллер укажет на в неисправный блок. При этом в случае записи потери информации не произойдет, но вот в случае чтения пропавшую информацию нельзя будет восстановить из резервного блока. Это повлечет потенциальные ошибки на более высоком уровне, даст искажение файлов и, вероятно, сбои программного обеспечения.

1.4.2. Логическое форматирование 

На более высоком уровне диск должен быть логически отформатирован. Логическое форматирование происходит на уровне 5 иерархии и заключается в создании файловой системы, благодаря чему достигается более высокая организация информации. Файлы имеют символьные имена, позволяя программам и пользователям осуществлять структурирование информации, осуществлять более быстрый поиск информации, а также управлять безопасностью доступа к информации.

Обыкновенно форматированием называют операцию, выполняемую утилитой format в DOS или Windows, либо утилитой типа dinit в UNIX. Эти утилиты проводят проверку блоков диска на исправность и на основе этих данных создают карту свободных блоков раздела, пригодных для хранения информации. Кроме того, они создают корневой каталог и так называемый суперблок, в котором находятся все необходимые сведения, необходимые для работы с файловой системой. Суперблок обыкновенно располагается либо в самом первом блоке раздела (вместе с загрузчиком ОС), либо в другом блоке, положение которого фиксировано относительно начала раздела. При загрузке операционной системы драйвер файловой системы производит считывание суперблока в память. На основе информации, взятой из него, он вычисляет расположение на диске корневого каталога и всех пользовательских данных. Дальнейшие обращения к диску производятся программами через файловую подсистему ОС.

В процессе форматирования разделу можно назначить символьное имя - метку тома. Она служит для более простой идентификации логического диска среди файловой системы среди других логических дисков.

Логическое форматирование применяется к разделу диска. Созданная в разделе файловая система обыкновенно отождествляется с самим разделом. Однако, это не совсем так. Дело в том, что информация о расположении раздела на диске хранится в суперблоке независимо от таблицы разделов, располагаемой в MBR. При создании суперблока в процессе форматирования информация из таблицы разделов о положении и длине форматируемого раздела переносится в суперблок. Это происходит по той причине, что операционная система берет все данные для работы с разделом именно из суперблока, а не таблицы разделов. Поэтому при изменении параметров раздела в таблице файловая система не ощутит этого изменения. Таким образом, содержимое таблицы разделов может не соответствовать файловой системе, если воспринимать ее как систему указателей для поиска нужных файлов или нового места для записи новых.

1.5. Разделы 

Для организации операционных систем дисковое адресное пространство блоков разделяется на части, называемые разделами (partitions). Разделы полностью подобны целому диску в том, что они состоят из смежных блоков. Благодаря такой организации для описания раздела достаточно указания начала раздела и его длины в блоках. Уровень физических разделов (уровень 3 в иерархии) возник в ходе исторического развития. На первых жестких дисках не было разделов.

Жесткие диски были полными аналогами гибких дисков в том, что содержали только одну файловую систему. В те времена этой, по существу, единственной файловой системой для PC была FAT12. Она была рассчитана всего на 4096 кластеров, и была способна покрыть от 2 до 32Мб адресного пространства диска, что вскоре привело к проблемам, потому что жесткие диски постоянно совершенствовались. Наиболее простым выходом в складывающейся ситуации было изобретение псевдофизических дисков . разделов. Каждый раздел мог содержать одну файловую систему FAT12. Однако, для этого потребовалось указывать для каждого раздела его положение на диске и переводить логические адреса блоков внутри раздела в абсолютные адреса блоков. О времени этого перехода мы можем судить по усложнению структуры суперблока файловых систем FAT. Произошло это где-то с версии DOS 2.13, что соответствует, по-видимому, концу лета 1983 года.

Таблица разделов. Появление разделов привело к изобретению таблицы разделов. Таблица разделов описывает до четырех разделов на диске. Расположили это таблицу в самом первом блоке диска, поскольку это был единственный путь сделать ее легко доступной в процессе загрузки. После этого усложнения структуры первый блок диска получил название Главной Загрузочной Записи (MBR - Master Boot Record).  

Ограничение таблицы разделов только четырьмя разделами со временем оказалось неудобным. По этой причине появилось деление разделов на первичные и расширенные. На сегодняшний день деление жесткого диска на разделы является стандартной и обязательной процедурой. Использование дисков без деления на разделы невозможно. Необходимость разбиения диска на несколько разделов обусловлена следующими причинами:

-Установка более чем одной ОС на один жесткий диск;

-Повышение эффективности использования дискового пространства;

-Управление видимостью файлов для разных пользователей. (Защита от сторонних пользователей, вирусов и сбоев программ);

-Изоляция данных разного сорта для более простого и быстрого их архивирования и восстановления.

Разделы создаются программой fdisk, имя которой стандартно практически для всех ОС. Например такие утилиты, как Partition Magic и SyMon содержат свои собственные средства  создания и работы с разделами, значительно превосходящие возможности обычных  fdisk.

1.5.1. Первичные разделы 

Первичные разделы называются так потому, что их описатели располагаются непосредственно в MBR. Первичные разделы описывают файловые системы, а также специальные разделы свопинга и дополнительные разделы. Загрузка компьютера может происходить только с первичных разделов для всех систем Microsoft и для большинства ОС других производителей.

1.5.2. Дополнительные (расширенные) разделы 

Дополнительным разделом называется первичный раздел специального вида. Он не содержит непосредственно файловой системы. Вместо этого он хранит расширенную таблицу разделов. Приблизительно топология представлена на рисунке.

Рис. 3  Внутреннее устройство расширенного раздела

В первом блоке расширенного раздела хранится таблица разделов, аналогичная таблице разделов MBR (формат ее абсолютно такой же как и в MBR, см. п. 2.8.1). Первая запись в этой таблице описывает некоторый подраздел относительно положения самой этой таблицы раздела, а вторая не описывает раздел, а является абсолютной ссылкой (относительно начала всего диска) на следующую расширенную таблицу разделов. Большинство системных программ требует, чтобы:

-Каждая таблица разделов располагалась в первом блоке цилиндра.

-Каждая расширенная таблица разделов содержала только один описатель раздела и одну ссылку на следующую расширенную таблицу разделов.

-Каждая расширенная последующая таблица разделов располагалась дальше от начала диска, чем предыдущая.

-Раздел, описанный в расширенной таблице разделов, располагался сразу за ней, обычно в начале следующей дорожки.

Таким образом, дополнительный раздел описывает цепочку разделов, которая целиком содержится в нем. При этом, эта цепочка без первого раздела может рассматриваться как расширенный раздел с меньшим количеством подразделов, при этом не требуется никаких изменений в расширенных таблицах разделов, расположенных непосредственно перед оставшимися подразделами.

1.5.3. Подразделы дополнительного раздела 

Подразделы дополнительного раздела полностью аналогичны первичным разделам. Они могут содержать файловые системы и служить для свопинга. Они не могут быть полностью выровнены на границу цилиндров, поскольку перед ними располагается расширенная таблица разделов, под которую резервируется целиком вся дорожка. Поэтому они начинаются в первом секторе первой дорожки диска.

Существует путаница между подразделами расширенного раздела и логическими дисками. Путаница исходит из утилиты fdisk. Эта утилита создает подразделы внутри дополнительного раздела и именует их логическими дисками. Однако логическим диском является отформатированный раздел, содержащий файловую систему FAT, NTFS или HPFS, то есть понятную операционной системе. Но далеко не всякий подраздел обязан содержать именно такую систему.

1.5.4. Изменение размеров разделов. 

Размер раздела хранится на физическом уровне в двух местах:

-в таблице разделов, основной (MBR) или какой-либо расширенной.

-в суперблоке файловой системы.

Таким образом, основной трудностью при изменении размеров раздела является синхронизация этих изменений. Изменить размер только в одном месте недостаточно. Файловая система никогда не подстраивается под размер раздела после того, как произведено логическое форматирование диска. Файлы всегда размещаются на пространстве диска, длина которого определяется в суперблоке файловой системы. Поэтому при нарушении равенства значений длины раздела из суперблока и таблицы разделов возникает опасность того, что разные файловые системы пересекутся на диске, и это, рано или поздно, приведет к повреждению файлов.

Изменение размера форматированного раздела должно производиться с помощью специальных программ. Эти программы понимают файловую систему, диагностируют, содержит ли та часть раздела, которую предполагается удалить, файлы, переносят их в другое место, укорачивают или удлиняют служебные структуры, такие как FAT, MFT или inode. Лишь после того, как управляющие структуры файловой системы адаптированы к новому значению её размера, это новое значение может быть поставлено в суперблоке, а потом и в таблице разделов.

Изменение неформатированного раздела производится гораздо легче. Поскольку файловая система там отсутствует, то суперблока нет и достаточно лишь изменить значения в таблицах разделов.

1.6. Файловые системы 

Под файловой системой с точки зрения жесткого диска следует понимать систему разметки раздела на служебные и пользовательские блоки для упорядоченного хранения информации. Служебные блоки описывают состояние пользовательских блоков, которые могут быть заняты файлами, либо свободными. В задачи файловой системы входит:

-Управление выделением свободных блоков под новые файлы

-Управление каталогами и именами файлов и ссылок

-Поиск содержимого файлов по имени.

Различные файловые системы с разной степенью эффективности реализуют перечисленные функции, а также поддерживаются различными файловыми системами. Наиболее часто встречающиеся файловые системы перечислены ниже.

1.6.1. FAT16 

Эта файловая система является одной из самых старых систем, применяемых до сих пор. Поддержка ее реализована в большинстве современных ОС: DOS, Windows 95/98/ME, Windows NT/2000/XP, OS/2, Linux, QNX, FreeBSD и других.

Название файловой системы происходит от имени ее главного управляющего элемента . таблицы размещения файлов (File Allocation Table). Единицей размещения данных является кластер, . совокупность нескольких смежных блоков диска. Размер кластера может быть 1, 2, 4, 8, 16, 32 или 64 блока. Файлы представляют собой цепочки кластеров. Таблица размещения файлов описывает цепочки кластеров, принадлежащих каждому файлу. Каждый кластер может принадлежать не более, чем одному файлу.

Число 16 в названии файловой системы говорит о количестве двоичных разрядов, отводимых под хранение номера кластера в таблице размещения файлов. FAT16 допускает на диске до 65525 кластеров, размер которых может быть от 512 до 32768 байт. Это позволяет создавать логические диски размером до 2Гб. Чем больше размер диска, тем больше необходим размер кластера.

Вообще говоря, большие кластеры снижают эффективность использования дискового пространства. Это связано с тем, что многие файлы являются короткими и часть места в кластере пропадает. Для большей надежности на диске хранится две копии FAT. Каждое изменение в размещении файлов одновременно отражается в обеих таблицах. Рассогласование этих таблиц является ошибкой. Если же рассогласование возникло, то не существует проверенного способа установить, какая из таблиц содержит более правильную информацию. Поэтому, наличие двух копий оправдано лишь в той ситуации, когда одна из копий просто физически не считывается с диска. Такая ситуация крайне маловероятна для жестких дисков, и является вероятной лишь для дискет. В самом деле, развитие систем  FAT началось с системы FAT12, которая и до сих пор используется для дискет. В случае с дискетами физически отказ блока, принадлежащего одной копии FAT, никак не связан с отказом блока второй копии, поэтому наличие двух копий оправдано. Любая же программная ошибка при модификации FAT обычно синхронно отражается в обеих копиях. Во всяком случае, при исправном чтении обеих копий FAT существует проблема выбора правильной копии.

Топология файловой системы FAT16 приведена на рисунке Рис. 4.

Рис. 4 Топология раздела FAT16

Кластеры пользователя располагаются непосредственно за корневым каталогом, размер которого задается при форматировании и впоследствии не изменяется операционной системой.

1.6.2. FAT32 

Система FAT32 является развитием системы FAT. Количество разрядов, кодирующих номер кластера, доведено до 32. В результате этого, FAT32 способна содержать почти в 65000 раз больше кластеров, чем система FAT16. Даже при маленьком размере кластера, разделы размером до 2Тб могут быть отформатированы под эту файловую систему. Дополнительно, система FAT32 имеет резервную копию загрузочной записи, и допускает произвольное расположение корневого каталога.

Система FAT32 доступна для использования начиная с Windows 95 OEM Release 2, в системах Windows 98, ME, а также в системах Windows 2000, XP. MS-DOS, Windows 3.1, Windows NT 3.51/4.0, ранние версии Windows 95 не могут использовать FAT32.

Рис. 5 Топология раздела FAT32

В отличие от FAT16 в системе FAT32 корневой каталог располагается в кластерах, подобно другим файлам. Загрузочная запись содержит ссылку на его первый кластер. 

1.6.3. NTFS 

Файловая система NTFS является более сложной по сравнению с системами FAT. Для работы с ней требуется больше оперативной памяти, поэтому ее использование начинает оправдывать себя только на сравнительно производительных и требующих высокой надежности системах. NTFS применяется в операционных системах Windows NT, Windows 2000 и Windows XP. Не рекомендуется форматировать под NTFS разделы размером менее 400Мб, потому что значительная часть места «пропадает» под служебные структуры данных.

В основе NTFS лежит структура данных, называемая MFT (Master File Table). MFT также является системным файлом, хранящим записи о других файлах. Каждая запись о файле имеет фиксированную длину. Запись содержит некоторую фиксированную информацию, общую для всех файлов, а также аттрибуты файла, которые описывают имя файла, место расположения его данных, время и дату создания и пр. Каждый файл описывается одним числом, представляющим собой индекс в таблице MFT.

Подобно системам FAT, система NTFS состоит из кластеров. Тем не менее, несколько усовершенствований сделано по сравнению с FAT. Кластеры могут иметь любой размер в секторах, кратный степени числа 2, вне зависимости от размера раздела. Кластеры заполняют весь раздел целиком, то есть кластер с номером 0 начинается сразу в начале раздела. Таким образом, по номеру кластера и его размеру однозначно вычисляется положения любого кластера на диске.

Система NTFS допускает криптование файлов, хранение их в сжатом виде, журналирование файловых операций, индексирование файлов в каталогах по произвольному атрибуту, а не только по имени. Поиск файла в каталоге является более оптимизированной операцией, чем в системах FAT.

Рис. 6  Топология раздела NTFS

Недостатком NTFS является то, что MFT является жизненно важной структурой, повреждение которой приводит к полной невозможности восстановить файлы, даже если они не фрагментированы. Запись в каталоге лишь ссылается на запись в MFT, которая содержит положение файла на диске в виде атрибута. Система FAT, хотя и является более примитивной, но допускает восстановление нефрагментированного файла по записи в каталоге, которая указывает непосредственно первый кластер файла и его размер.

1.6.4. HPFS 

Данная файловая система разрабатывалась фирмой IBM и является далеким родственником NTFS. Она используется преимущественно в операционной системе OS/2,  о поддерживается также в ранних версиях Windows NT.

HPFS обладает лучшими характеристиками по сравнению с FAT, каталоги представлены в виде дерева, что позволяет довольно быстро искать необходимые файлы в больших каталогах, а также сортировать файлы по имени. Кластеры в этой файловой системе отсутствуют, выделение свободного места осуществляется посекторно. Весь раздел делится на участки длиной 8Мб, свободное место в каждом участке описывается битовой картой. Это упрощает выделение места под файлы, поскольку перемещение головой достаточно проводить к ближайшей битовой карте, а не к началу диска, как в системе FAT.

1.6.5. Ext2fs 

Данная файловая система используется как основная файловая система для Linux.

1.7. Монтирование файловых систем 

Каждый файл, хранящийся на диске, имеет свое имя. Зная имя, пользователи могут работать с данными, содержащимися в файле, указывая его программам. Поскольку файлы принято располагать упорядоченно в виде дерева каталогов, или папок, то каждому файлу, соответствует полное имя, указывающее его положения от корня дерева. Каждый раздел диска, отформатированный под некоторую файловую систему, содержит корневой каталог и описывает часть будущей системы файлов, доступной пользователю. Чтобы операционная систем могла находить файлы пользователя, ей требуется указание точного имени файла.

Таким образом, имя файла складывается из имени его раздела, и его имени внутри этого раздела. Это верно для любых файловых систем. Например, в системе DOS, для точного указания положения файла autoexec.bat необходимо указывать C:\autoexec.bat. В данном случае имя C: указывает раздел, а имя \autoexec.bat . имя файла внутри него.

Операция назначения символьного имени разделу, содержащему файловую систему, называется монтированием. Монтирование происходит при старте операционной системы, с этой операции начинается работа с файлами.  

Исторически монтирование файловых систем появилось в системах unix, где файловая система устроена весьма гибко. Вся файловая система имеет один единственный корневой каталог, а имена файлов не имеют жесткой привязки к конкретным физическим устройствам. Кроме того, операции монтирования существует парная операция размонтирования. Обе операции доступны пользователю в процессе работы, а не только при старте операционной системы. Пользователь может самостоятельно определять точки монтирования, благодаря чему имена файлов остаются неизменными при изменении числа физических дисков в системе. Причем, даже если в процессе изменения конфигурации компьютера файлы окажутся недоступными, либо поменявшими имена, пользователь всегда может размонтировать часть файловой системы и примонтировать ее в правильное место иерархии файлов.

Операционные системы фирмы Microsoft не обладают такой гибкостью. Имена файлов начинаются не от общего корня, а от имени диска, на котором они расположены. Операция монтирования производится системой один раз при запуске, причем имена точек монтирования, то есть имена дисков, назначаются системой жестким образом, привязано к конфигурации аппаратных устройств. Это создает существенные неудобства в работе с файлами, поскольку практически любое добавление или удаление физических дисков приводит к изменению точек монтирования оставшихся дисков без ведома пользователя.

Изменение имен дисков часто приводит к нарушению путей к программам, расположенным не на диске C:.

В системах Microsoft Windows NT/2000/XP монтирование дисков происходит при старте компьютера, однако они допускают переназначение имен дисков, за исключением загрузочного диска. Это позволяет частично избежать проблем, связанных с изменением конфигурации, хотя на практике является довольно неудобным.

1.7.1. Порядок назначения имен дисков 

При загрузке операционных систем фирмы Microsoft разделы (как основные, так и подразделы дополнительных) выступают носителями логических дисков, поэтому операционная система назначает им буквенные имена устройств. Добавление в систему новых жестких дисков или удаление имеющихся влияет на порядок назначения букв различным логическим дискам, что зачастую приводит к нежелательным эффектам.

Настройки многих программ соджержат полные пути к определенным файлам, то есть привязаны к определенным логическим дискам. При изменении буквенных имен дисков настройки оказываются неправильными, в результате чего работать с программами становится невозможно.

DOS, Windows 3.x, Windows 95/98/ME, OS/2

Эти операционные системы назначают имена дисков жестким образом, исходя из имеющихся дисков и типов разделов на них. Правила назначения разделов таковы:

1.  Имена назначаются всем распознаваемым активным primary разделам, в порядке следования физических дисков.

2.  Имена назначаются всем распознаваемым дискам, располагающимся внутри расширенных разделов. Расширенные разделы перебираются в порядке следования физических дисков.

3.  Имена назначаются всем оставшимся primary разделам, в порядке следования физических дисков.

Таким образом, изменение количества физических дисков может приводить к сдвигу букв, назначаемых логическим дискам. Сдвиг букв может происходить также в случае добавления удаления нового раздела, содержащего файловую систему, распознаваемую данной ОС. Разделы, которые содержат файловую систему, не распознаваемую ОС, пропускаются ей, так что сдвига букв не происходит.

Windows NT/2000/XP

Первоначально, в процессе установки, эти операционные системы поступают аналогично версиям DOS & Windows 9x, с той разницей, что разделы NTFS являются для них также распознаваемыми. Однако, в дальнейшем эти системы допускают переназначение имен всех дисков, кроме того, с которого производится загрузка системы. Переназначение дисков производится с помощью утилиты Disk Administrator, входящей в поставку Windows NT/2000/XP. После назначения имен дисков, они закрепляются за своими разделами и более не зависят от появления или удаления других разделов.

1.8. Порядок загрузки операционной системы  

Загрузка операционной системы . многоэтапный процесс. Он начинается в BIOS после тестирования оборудования и определения списка устройств, поддерживающих загрузку. Такими устройствами могут быть различные дисковые накопители, сетевые адаптеры, ленты и прочие устройства. Но в первую очередь загрузочными устройствами являются жесткие диски.

В общем случае, загрузка операционной системы с жесткого диска происходит в несколько этапов:

1.  Выбор диска, с которого осуществляется загрузка. Выбор осуществляется пользователем в BIOS setup в процессе общего выбора устройства, с которого грузиться. При этом, BIOS переназначает номера дисков так, что загрузочный диск попадает на первое место среди всех других дисков.

2.  С выбранного диска считывается главная загрузочная запись (MBR). Проверяется сигнатура, отвечающая за исправность считанных данных. Управление передается загрузчику, являющемуся частью MBR. С этого момента управление загрузкой покидает BIOS и определяется программами, расположенными на жестком диске.

3.  Загрузчик из MBR выявляет загрузочный раздел операционной системы. В случае стандартного загрузчика MBR загрузочным разделом становится раздел из таблицы разделов MBR, отмеченный специальным флагом как активный раздел. В случае SyMon загрузочный раздел указывается пользователем в настройках операционной системы. Из первого блока загрузочного раздела считывается загрузочный сектор операционной системы. Проверяется сигнатура этого блока и в случае успеха управление передается расположенному в нем загрузчику.

4.  Загрузчик операционной системы производит загрузку ядра операционной системы и передает управление в ядро.

5.  После инициализации ядра и активации драйверов жесткого диска начинается процесс монтирования и инициализации файловых систем.

6.  Дальнейшая загрузка продолжается под управлением конфигурационных файлов ОС (например, autoexcec.bat и config.sys в ОС DOS).

Указанные несколько этапов выполняются на разных уровнях, что проявляется, в первую очередь, в проблемах совместимости. Загрузка с помощью BIOS на начальном этапе ограничивает программные средства всех загрузчиков стандартными функциями BIOS.

Учитывая, что на их собственные функции загрузчикам отводится менее, чем 512 байт, вряд ли можно ожидать от них высокой гибкости. Главная трудность заключается в том, что загрузчику не хватает места для реализации мини-драйвера современной файловой системы, который мог бы осуществить считывание целиком файла в память. Поэтому разработчикам приходится делать загрузчик в два этапа. На первом из них, загрузчик, расположенный в первом блоке раздела ОС, осуществляет считывание в память вторичного загрузчика, который больше по размеру. Уже вторичный загрузчик подгружает ядро из файла.

1.8.1. Главная загрузочная запись (MBR) 

Главная загрузочная запись всегда располагается в блоке 0 физического диска и является, по существу, загрузочным сектором жесткого диска в целом. MBR всегда загружается средствами BIOS по адресу памяти 0x0000:0x7C00. BIOS не различает загрузочные записи жестких и гибких дисков, несмотря на то, что первые, в отличие от вторых, содержат таблицу разделов. Исключением является, пожалуй, то, что в некоторых режимах логическая геометрия диска (число головок и секторов) корректируется по значениям таблицы разделов MBR. Основная работа BIOS с MBR заключается в загрузке и передаче управления загрузочному коду.

Ниже приведена структура MBR (а) и структура одного раздела в таблице разделов (б) загрузочной записи.

Рис. 7 Формат главной загрузочной записи (MBR)

1.8.2. Загрузочный блок ОС (BR) 

Структура загрузочного блока ОС, называемого также загрузочной записью (Boot Record), может быть произвольной. В основном, в отношении загрузочных блоков выполняется два утверждения:

В конце загрузочного блока имеется сигнатура 0xAA55, полностью аналогичная сигнатуре MBR. Это связано с их родственным происхождением, . BIOS практически не различает по назначению эти блоки. Основной его принцип . загрузить, проверить сигнатуру и запустить.

Загрузочный блок ОС располагается всегда в самом первом блоке загрузочного раздела ОС. Точка входа в программу загрузчика находится всегда по адресу 0 относительно начала блока. Это дает универсальность загрузки любой ОС с помощью стандартного загрузчика MBR.

В загрузочном блоке содержится программа, осуществляющая поиск и загрузку ядра ОС. Однако, поскольку 512 байт явно недостаточно для того, чтобы уместить в них серьезную программу, то возникает потребность в промежуточном загрузчике, который:

1.  Достаточно мал, чтобы его было легко загрузить с помощью загрузчика размером всего 400-500 байт.

2.  Достаточно велик, чтобы в нем самом можно было разместить процедуры работы с файлами, осуществляющие поиск и загрузку ядра.

В зависимости от сложности файловой системы существует два решения этой задачи.

Первое заключается в том, что загрузчик пытается сразу прочитать часть файла операционной системы. Так делает, например, система DOS и ее наследники - Windows 95/98/ME. Их загрузчик находит в корневом каталоге файл IO.SYS и считывает первые его три блока. Основа этого . простота систем FAT, которая позволяет по первому кластеру файла, указанному в каталоге, выловить с диска начало файла. Тем не менее, системные файлы должны быть для этого дефрагментированными и скрытыми от обычных программ.

Второе решение заключается в том, что загрузчик содержит в своем теле абсолютные адреса продолжения самого себя и первым делом считывает свое продолжение в память. Так делают, например, ntldr, LILO и другие. Это решение неудобно тем, что загрузчик адресует себя не через файловую систему, а непосредственно, поэтому манипуляции с файлами могут привести к сбою загрузки, так что его приходится делать неперемещаемым файлом. Но даже при соблюдении этого перенос раздела целиком на новое место вновь даст неправильную цепочку блоков, и загрузка станет невозможной. В таких ситуациях всегда рекомендуется иметь загрузочную дискету, способную восстановить загрузчик ОС на жестком диске.

1.9. Заключение 

В данном разделе были рассмотрены основные понятия, касающиеся организации информации на жестких дисках. Любая операционная система основывается на принципах, изложенных выше.

Установка операционной системы начинается с разбиения диска на разделы. Далее, разделы форматируются под одну из файловых систем, поддерживаемых операционной системой. После форматирования, дисковое пространство становится доступным для хранения файлов. Программа установки ОС распаковывает пакеты программ на созданное свободное место. После этого, она производит настройку программ и создает загрузочную запись раздела, обеспечивающую загрузку ядра после выбора данной операционной системы.

Разбиение диска на разделы производится программно, при помощи структуры данных, называемой таблицей разделов. Она располагается в самом первом блоке жесткого диска и называется также главной загрузочной записью (MBR). MBR содержит записи о 4 разделах, которых может оказаться недостаточно для установки нескольких операционных систем, если их количество превышает количество свободных разделов. Стандартное содержимое MBR позволяет загружать операционные системы с одного из 4 разделов, описанных в таблице разделов. Для загрузки большего количества ОС требуется специальное программное обеспечение, обеспечивающее загрузочное меню и загрузку выбранной пользователем операционной системы.

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

58007. Від атома до Галактики 158 KB
  Мета уроку: Узагальнити і систематизувати знання учнів по темі „Степінь з цілим показником”. Формувати в учнів вміння встановлювити головне. Самостійно застосовувати набуті знання в стандартних і не стандартних ситуаціях, а також вміння аналізувати певні математичні твердження, робити висновки.
58008. Чотирикутники. Подібність трикутників. Теорема Піфагора. Площі многокутників Розв’язування прямокутних трикутників 175.5 KB
  Мета уроку: Вдосконалення компентентності учнів з теми: Подібність трикутників, теореми Піфагора; площі многокутників; розв’язування прямокутних трикутників. Формувати вміння застосовувати їх під час розв’язування практичних (прикладних) задач; активізувати пізнавальну діяльність учнів;
58009. Геометрические преобразования 144 KB
  Цель урока: Показать исключительную роль принципа симметрии в научном познании мира в человеческом творчестве и научить различать многообразные проявления симметрии в окружающем мире. Задачи: дать представление о симметрии в геометрии; научить распознавать виды симметрии...
58010. Географічні відкриття на уроках математики 141 KB
  Мета: освітня: підвищення мотивації до вивчення предметів шкільного курсу; повторення тем з математики: пропорції відсотки масштаб; розвинути в учнів уміння реалізовувати практичні звязки курсу математики і географії з майбутньою професією...
58011. Герб и его символика 49 KB
  Художественно-литературное название урока: Рисунок является источником и душой всех видов изобразительного искусства и корнем любой науки итальянский художник Микеланджело Тема урока: Герб и его символика Каждое искусство имеет как бы два...
58012. ES HERBSTET SCHON 365.5 KB
  Цілі уроку: Практична: опрацювати нову лексику по темі «Пори року», активізувати лексичний матеріал в усному і писемному мовленні, навчити учнів говорити про погоду восени, описувати осінній ліс, розвивати навички читання і аудіювання. Освітня: розширити знання учнів про природу рідного краю.
58013. Гидросфера. Обобщающий урок 80.5 KB
  Развивать познавательный интерес и географическое мышление учащихся; воспитывать географическую культуру и эстетическое восприятие географических объектов через литературные произведения.
58014. Гістотехнології. Основні напрямки біотехнології 80.5 KB
  Мета: розглянути один з нових напрямів біотехнології який займається створенням біологічних замісників тканин і органів; формувати поняття тканинна інженерія розвивати інтелектуальні здібності логічне мислення; виховувати бережливе ставлення до живих організмів та власного здоров’я...