77691

Аппаратная реализация RLL-кодирования

Реферат

Информатика, кибернетика и программирование

Наибольшее распространение по крайней мере для жестких дисков PC получило так называемое кодирование с ограниченной длиной отрезка или RLLкодирование. Математики и инженеры считают способ 27 RLL разновидностью записи с групповым кодированием Groupoded Recording GCR. Обычная форма способа 27 RLL относится к кодированию GCR с переменной длиной.

Русский

2015-02-05

56.5 KB

1 чел.

Аппаратная реализация RLL-кодирования

Оказалось, что, несмотря на популярность и эффективность, MFM-кодирование не самый эффективный способ кодирования данных. В MFM-кодировании размер битовой ячейки уменьшается до минимальной длины магнитного триггера, но можно достичь лучшего результата при дальнейшем сокращении числа сигналов синхронизации. Степень сокращения зависит от постоянства скорости вращения диска и от точности выделения импульсов, поступающих от головки считывания. Разработчики дисковых систем проверили много способов снижения среднего числа импульсов синхронизации на бит данных и соответствующего повышения максимальной плотности битов на поверхности диска. Наибольшее распространение, по крайней мере, для жестких дисков PC, получило так называемое кодирование с ограниченной длиной отрезка или RLL-кодирование. В этом способе совершенно нет сигналов синхронизации! Это стало возможно при записи на диск наборов, которые отличаются от наборов сохраняемых данных. При правильном выборе записываемых наборов контроллер при считывании данных может "обратить" этот процесс. Математики и инженеры считают способ 2,7 RLL разновидностью записи с групповым кодированием (Group-oded Recording — GCR). Идея группового кодирования состоит в том, что группа битов данных заменяется большей группой записываемых битов. (Здесь у вас, конечно, появится вопрос: "Нужно ли расходовать поверхность, записывая больше битов, чем имеется в данных?" Минуточку терпения, и ответ будет очевиден.) Обычная форма способа 2,7 RLL относится к кодированию GCR с переменной длиной. Другими словами, размер групп заменяющих битов зависит от фактических битов данных. RLL-кодирование использует два ограничения на любой набор переходов магнитных полей, которые можно записать на поверхности диска. Во-первых, переходы магнитного поля не должны следовать чаще, чем минимальная длина магнитного триггера (этим предотвращается риск стирания предшествующего магнитного поля при записи нового). Во-вторых, промежутки без переходов не должны быть столь длинными, чтобы контроллер диска потерял текущую позицию на диске. Таким образом, для переходов магнитного поля имеются максимальная и минимальная допустимые частоты. (Другими словами, в терминах расстояний по дорожке между переходами магнитного поля имеются максимальная и минимальная допустимее длины промежутка или "отрезка" без переходов. Кодирование RLL и означает, что эти "отрезки" дорожки между переходами ограничены верхней и нижней величинами.)

Оказалось, что, несмотря на популярность и эффективность, MFM-кодирование не самый эффективный способ кодирования данных. В MFM-кодировании размер битовой ячейки уменьшается до минимальной длины магнитного триггера, но можно достичь лучшего результата при дальнейшем сокращении числа сигналов синхронизации. Степень сокращения зависит от постоянства скорости вращения диска и от точности выделения импульсов, поступающих от головки считывания. Разработчики дисковых систем проверили много способов снижения среднего числа импульсов синхронизации на бит данных и соответствующего повышения максимальной плотности битов на поверхности диска. Наибольшее распространение, по крайней мере, для жестких дисков PC, получило так называемое кодирование с ограниченной длиной отрезка или RLL-кодирование. В этом способе совершенно нет сигналов синхронизации! Это стало возможно при записи на диск наборов, которые отличаются от наборов сохраняемых данных. При правильном выборе записываемых наборов контроллер при считывании данных может "обратить" этот процесс. Математики и инженеры считают способ 2,7 RLL разновидностью записи с групповым кодированием (Group-oded Recording — GCR). Идея группового кодирования состоит в том, что группа битов данных заменяется большей группой записываемых битов. (Здесь у вас, конечно, появится вопрос: "Нужно ли расходовать поверхность, записывая больше битов, чем имеется в данных?" Минуточку терпения, и ответ будет очевиден.) Обычная форма способа 2,7 RLL относится к кодированию GCR с переменной длиной. Другими словами, размер групп заменяющих битов зависит от фактических битов данных. RLL-кодирование использует два ограничения на любой набор переходов магнитных полей, которые можно записать на поверхности диска. Во-первых, переходы магнитного поля не должны следовать чаще, чем минимальная длина магнитного триггера (этим предотвращается риск стирания предшествующего магнитного поля при записи нового). Во-вторых, промежутки без переходов не должны быть столь длинными, чтобы контроллер диска потерял текущую позицию на диске. Таким образом, для переходов магнитного поля имеются максимальная и минимальная допустимые частоты. (Другими словами, в терминах расстояний по дорожке между переходами магнитного поля имеются максимальная и минимальная допустимее длины промежутка или "отрезка" без переходов. Кодирование RLL и означает, что эти "отрезки" дорожки между переходами ограничены верхней и нижней величинами.)

Каждая последовательность Т и О имеет точно в два раза больше знаков, чем набор кодируемых единиц и нулей. Поскольку от О до Т минимум три знака, то в минимальную длину магнитного триггера можно поместить три знака. Поскольку два знака равны одному биту, размер битовой ячейки сокращается до двух третей длины триггера. Такой размер позволяет накопителю разместить в полтора раза (150%) больше битов на длине дорожки, чем в MFM-кодпровании, и в три рала больше битов, чем в FM-кодпровании. Таким образом, в RLL-кодировашш специальные наборы переходов заменяют фактические записываемые наборы данных. Наборы выбраны так, чтобы отношение максимального промежутка между переходами поля к минимальному было как 8 к 3 Применение такого способа позволяет в гом же пространстве сохранить на 50% больше данных. Большнниво жестких дисков вращаются с одинаковой скоростью, на запись и считывание одной и той же информации уходит только две трети времени. На рис. 2.7,д показано, как выглядит RLL-коднрованне одного и того же байта по сравнению с другими способами кодирования. Несмотря на возможность улучшения RLL-коднрованпя, этот процесс оказывается непростым и недостаточно надежным для большинства пользова!елей. Как всегда, на практике RLL-кодирова-ние встречает определенные ограничения. Поскольку в RLL-кодпроваиин переходы магнитного иоля оказываются не ближе, чем в MFM-кодированни, многие полагают, что можно применять MFM-накошпель как RLL-иакопитель, просто подключив к MFM-накогштелю RLL-контроллер. К сожалению, при первом появлении на рынке несколько лет назад для надежного применения RLL-кодирования пришлось усложнить электронику жестких дисков и контроллера. Накопители и контроллеры довольно часто и с драматическими последствиями отказывали С тех пор фирмы-производители RLL-контроллеров разработали лучшие методы, а производители накопителен стали более жестко тестировать своп изделия В ре зультате сейчас появились накопители, "сертифицированные для RLL-коднрования", а других пока нет. Объединение RLI-сертифицированного накопителя с RLL-KOHтроллером оказывается довольно надежным устройством.


 

А также другие работы, которые могут Вас заинтересовать

34351. Классификация, основные свойства и назначение минеральных вяжущих материалов 23 KB
  Минеральные вяжущие вещества по способности затвердевать и сохранять прочность на воздухе или в воде подразделяют на воздушные и гидравлические. Воздушные вяжущие вещества после смешивания с водой твердеют прочность получающегося камня сохраняется или повышается только на воздухе. Поэтому такие вяжущие применяют при возведении надземных сооружений не подвергающихся действию воды. Гидравлические вяжущие вещества обладают этими свойствами не только на воздухе но и в воде их применяют в надземных подземных...
34352. Технология производства портландцемента по сухому и мокрому способу 32 KB
  В зоне испарения до 200 С испаряется свободная вода происходит высушивание сырьевой смеси подсушенный материал комкуется. Дальнейшее высушивание смеси выгорание органических примесей начало дегидратации глины удаления химически связанной воды разрушение глинистых минералов происходит в зоне подогрева 200. В третьей зоне зоне декарбонизации 700. Термическая диссоциация СаСОз эндотермический процесс поэтому потребление теплоты в третьей зоне печи наибольшее.
34353. Технико-экономические показатели производства цемента 21 KB
  Техникоэкономические показатели производства цемента. Себестоимость цемента оказывает реш. расход цемента достиг. Себестоимость цемента зависит от вида исходного сырья топлива ТП и объема производства.
34354. Гипсовые вяжущие материалы, их производство и назначение 27 KB
  Сырьем для производства гипсовых вяжущих служат природный гипсовый камень CSO42H2O и природный ангидрит CSO4 а также отходы химической промышленности содержащие сернокислый кальций фосфогипс при переработке природных фосфатов в суперфосфат борогипс и др. Низкообжиговые гипсовые вяжущие вещества получают тепловой обработкой двуводного гипса CSO42H2O при низких температурах 110.160 С с частичной его дегидратацией и переводом в полуводный гипс CSO405H2O. При этом двуводный гипс дегидратируется по реакции: CSO42H2O = =...
34355. Строительная известь. Производство, свойства, назначение 22.5 KB
  Строительная известь. известью называется вяжущее вещество получаемое в резте умеренного обжига и последующего помола кальциевомагниевых карбонатных горных пород известняка мела доломита с содержанием не более 6 глинистых примесей. Известь получают за счет разложения известняка: CCO3=CO CO2; MgCO3=MgOCO2. Полученная при обжиге карбонатных пород негашеная комовая известь затем поступает на помол или гашение.
34356. Безобжиговые изделия на основе вяжущих материалов 21.5 KB
  Безобжиговые изделия на основе вяжущих материалов. изделий: 1Силикатные материалы и изделия получаемые на основе извести: силикатный кирпич; крупноразмерные плотные силикатные изделия: блоки внутренних несущих стен зданий лестничные ступени балки и др. 2гипсовые изделия получаемые на основе строительного гипса: панели и плиты перегородочные листы обшивочные изделия для перекрытий архитектурные детали и др. 3 матлы и изделия на основе магнезиальных вяжущих вв: теплоизоляционный фибролит для утепления стен; фибролитовая фанера; пено...
34357. Композиционные материалы, область применения и экономическая оценка 21.5 KB
  Композиционные материалы область применения и экономическая оценка. Для изготовления деталей машин приборов используют консрукционные матлы и матлы спец. Кострукционные матлы подразделяются на металлические неметаллич. Композиционные материалы это матлы образованные объемным сочетанием химически разнородных компонентов с четкой границей разделения между ними.
34358. Особенности и основные направления научно-технического процесса и роль современных технологий 23 KB
  Особенности и основные направления научнотехнического процесса и роль современных технологий. 3ий этап информационных технологий . Особенности современного этапа: высокий темп развития наукоемких отраслей; модернизация отраслей; разработка и внедрения сберегающих технологий; малобезотходное производство; развитие компьютерных технологий; замена Тж на Тп . технологий.
34359. Программное управление технологическим процессом 26 KB
  Программное управление технологическим процессом Для современного производства характерна его компьютеризация или электронная автоматизация. Программное управление управление режимом работы объекта по заранее заданному алгоритму программе. Программное управление технологическим оборудованием и процессами охватывает управление движением машин механизмов транспортных средств и изменением параметров технологического процесса. К оборудованию с программным управлением относят: автоматические линии АЛ; станки с числовым программным...