77691

Аппаратная реализация RLL-кодирования

Реферат

Информатика, кибернетика и программирование

Наибольшее распространение по крайней мере для жестких дисков PC получило так называемое кодирование с ограниченной длиной отрезка или RLLкодирование. Математики и инженеры считают способ 27 RLL разновидностью записи с групповым кодированием Groupoded Recording GCR. Обычная форма способа 27 RLL относится к кодированию GCR с переменной длиной.

Русский

2015-02-05

56.5 KB

1 чел.

Аппаратная реализация RLL-кодирования

Оказалось, что, несмотря на популярность и эффективность, MFM-кодирование не самый эффективный способ кодирования данных. В MFM-кодировании размер битовой ячейки уменьшается до минимальной длины магнитного триггера, но можно достичь лучшего результата при дальнейшем сокращении числа сигналов синхронизации. Степень сокращения зависит от постоянства скорости вращения диска и от точности выделения импульсов, поступающих от головки считывания. Разработчики дисковых систем проверили много способов снижения среднего числа импульсов синхронизации на бит данных и соответствующего повышения максимальной плотности битов на поверхности диска. Наибольшее распространение, по крайней мере, для жестких дисков PC, получило так называемое кодирование с ограниченной длиной отрезка или RLL-кодирование. В этом способе совершенно нет сигналов синхронизации! Это стало возможно при записи на диск наборов, которые отличаются от наборов сохраняемых данных. При правильном выборе записываемых наборов контроллер при считывании данных может "обратить" этот процесс. Математики и инженеры считают способ 2,7 RLL разновидностью записи с групповым кодированием (Group-oded Recording — GCR). Идея группового кодирования состоит в том, что группа битов данных заменяется большей группой записываемых битов. (Здесь у вас, конечно, появится вопрос: "Нужно ли расходовать поверхность, записывая больше битов, чем имеется в данных?" Минуточку терпения, и ответ будет очевиден.) Обычная форма способа 2,7 RLL относится к кодированию GCR с переменной длиной. Другими словами, размер групп заменяющих битов зависит от фактических битов данных. RLL-кодирование использует два ограничения на любой набор переходов магнитных полей, которые можно записать на поверхности диска. Во-первых, переходы магнитного поля не должны следовать чаще, чем минимальная длина магнитного триггера (этим предотвращается риск стирания предшествующего магнитного поля при записи нового). Во-вторых, промежутки без переходов не должны быть столь длинными, чтобы контроллер диска потерял текущую позицию на диске. Таким образом, для переходов магнитного поля имеются максимальная и минимальная допустимые частоты. (Другими словами, в терминах расстояний по дорожке между переходами магнитного поля имеются максимальная и минимальная допустимее длины промежутка или "отрезка" без переходов. Кодирование RLL и означает, что эти "отрезки" дорожки между переходами ограничены верхней и нижней величинами.)

Оказалось, что, несмотря на популярность и эффективность, MFM-кодирование не самый эффективный способ кодирования данных. В MFM-кодировании размер битовой ячейки уменьшается до минимальной длины магнитного триггера, но можно достичь лучшего результата при дальнейшем сокращении числа сигналов синхронизации. Степень сокращения зависит от постоянства скорости вращения диска и от точности выделения импульсов, поступающих от головки считывания. Разработчики дисковых систем проверили много способов снижения среднего числа импульсов синхронизации на бит данных и соответствующего повышения максимальной плотности битов на поверхности диска. Наибольшее распространение, по крайней мере, для жестких дисков PC, получило так называемое кодирование с ограниченной длиной отрезка или RLL-кодирование. В этом способе совершенно нет сигналов синхронизации! Это стало возможно при записи на диск наборов, которые отличаются от наборов сохраняемых данных. При правильном выборе записываемых наборов контроллер при считывании данных может "обратить" этот процесс. Математики и инженеры считают способ 2,7 RLL разновидностью записи с групповым кодированием (Group-oded Recording — GCR). Идея группового кодирования состоит в том, что группа битов данных заменяется большей группой записываемых битов. (Здесь у вас, конечно, появится вопрос: "Нужно ли расходовать поверхность, записывая больше битов, чем имеется в данных?" Минуточку терпения, и ответ будет очевиден.) Обычная форма способа 2,7 RLL относится к кодированию GCR с переменной длиной. Другими словами, размер групп заменяющих битов зависит от фактических битов данных. RLL-кодирование использует два ограничения на любой набор переходов магнитных полей, которые можно записать на поверхности диска. Во-первых, переходы магнитного поля не должны следовать чаще, чем минимальная длина магнитного триггера (этим предотвращается риск стирания предшествующего магнитного поля при записи нового). Во-вторых, промежутки без переходов не должны быть столь длинными, чтобы контроллер диска потерял текущую позицию на диске. Таким образом, для переходов магнитного поля имеются максимальная и минимальная допустимые частоты. (Другими словами, в терминах расстояний по дорожке между переходами магнитного поля имеются максимальная и минимальная допустимее длины промежутка или "отрезка" без переходов. Кодирование RLL и означает, что эти "отрезки" дорожки между переходами ограничены верхней и нижней величинами.)

Каждая последовательность Т и О имеет точно в два раза больше знаков, чем набор кодируемых единиц и нулей. Поскольку от О до Т минимум три знака, то в минимальную длину магнитного триггера можно поместить три знака. Поскольку два знака равны одному биту, размер битовой ячейки сокращается до двух третей длины триггера. Такой размер позволяет накопителю разместить в полтора раза (150%) больше битов на длине дорожки, чем в MFM-кодпровании, и в три рала больше битов, чем в FM-кодпровании. Таким образом, в RLL-кодировашш специальные наборы переходов заменяют фактические записываемые наборы данных. Наборы выбраны так, чтобы отношение максимального промежутка между переходами поля к минимальному было как 8 к 3 Применение такого способа позволяет в гом же пространстве сохранить на 50% больше данных. Большнниво жестких дисков вращаются с одинаковой скоростью, на запись и считывание одной и той же информации уходит только две трети времени. На рис. 2.7,д показано, как выглядит RLL-коднрованне одного и того же байта по сравнению с другими способами кодирования. Несмотря на возможность улучшения RLL-коднрованпя, этот процесс оказывается непростым и недостаточно надежным для большинства пользова!елей. Как всегда, на практике RLL-кодирова-ние встречает определенные ограничения. Поскольку в RLL-кодпроваиин переходы магнитного иоля оказываются не ближе, чем в MFM-кодированни, многие полагают, что можно применять MFM-накошпель как RLL-иакопитель, просто подключив к MFM-накогштелю RLL-контроллер. К сожалению, при первом появлении на рынке несколько лет назад для надежного применения RLL-кодирования пришлось усложнить электронику жестких дисков и контроллера. Накопители и контроллеры довольно часто и с драматическими последствиями отказывали С тех пор фирмы-производители RLL-контроллеров разработали лучшие методы, а производители накопителен стали более жестко тестировать своп изделия В ре зультате сейчас появились накопители, "сертифицированные для RLL-коднрования", а других пока нет. Объединение RLI-сертифицированного накопителя с RLL-KOHтроллером оказывается довольно надежным устройством.


 

А также другие работы, которые могут Вас заинтересовать

7321. Тістечка. Напівфабрикати для приготування тістечок 45.5 KB
  Тістечка. Напівфабрикати для приготування тістечок. Класифікація тістечок. Особливості технології приготування тістечок. Основні органолептичні показники. Санітарні правила при приготуванні та реалізації. Умови та термін зберігання...
7322. Робочий час і час відпочинку 205 KB
  Як відомо, ні рабовласницький, ні феодальний устрої не мали законодавчого обмеження робочого часу, оскільки носій робочої сили був разом з іншими знаряддями виробництва об'єктом власності.
7323. Керування пам’яттю в ОС. Сегментна, сторінкова й сегментно-сторінкова організація пам’яті 1.12 MB
  Сегментація памяті дає змогу зображати логічний адресний простір як сукупність незалежних блоків змінної довжини, які називають сегментами. Кожний сегмент звичайно містить дані одного призначення, наприклад в одному може бути стек, в іншому - програмний код і т. д.
7324. География экономического района России. Уральский экономический район 371.5 KB
  География экономического района России. Уральский экономический район Введение Россия представляет собой самый обширный регион всей Евразии и единственную федерацию в рамках СНГ, поэтому региональный анализ ее экономических районов имеет особый смыс...
7325. Система управления электромуфты переключения направления намотки кабеля 180.5 KB
  ВВЕДЕНИЕ Устройство, на ряду со своей основной функцией, способно работать также и в качестве реле аварийной сигнализации. Оно выгодно отличается компактностью, небольшими массой и собственным потреблением электроэнергии. Для автомобилей новых модел...
7326. Кражи и грабежи как преступления против собственности 404 KB
  Кражи и грабежи как преступления против собственности 1. Кража Закон, касающийся кражи и относящихся к ней преступлений таких как грабеж, кража со взломом, различные преступления, включающие обман, шантаж и продажу (передачу) краденного, содержится ...
7327. Информационные технологии управления 468.5 KB
  Информационные технологии управления Информационные технологии и системы, понятие и свойства. Состав и структура экономических информационных систем. Жизненный цикл информационной системы. Классификация автоматизированных инф...
7328. Расчет силового масляного трансформатора 336 KB
  Расчет силового масляного трансформатора. Задание на расчет. Требуется рассчитать конструкцию и параметры силового трансформатора с масляным охлаждением со следующими параметрами: Мощность трансформатора SH = 1000 кВА. Число фаз m = 3. Частота f = 5...
7329. Измеритель активной энергии в однофазной сети на основе микроконтроллера ATMEL 654.5 KB
  Измеритель активной энергии в однофазной сети на основе микроконтроллера ATMEL Разработать измеритель активной энергии в однофазной сети 220 В с токовой нагрузкой 100 А на основе микроконтроллера фирмы ATMEL. Технические требования. В качестве перви...