77736

Интерфейс ATA

Лекция

Информатика, кибернетика и программирование

После введения в 2003 году стандарта Seril T Последовательный T традиционный T стали именовать Prllel T имея в виду способ передачи данных по 40 жильному кабелю. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на четность CRC что повышает надёжность передачи информации. 1й регистр с адресом 0 является 16 разрядный и используется для передачи данных между диском и контроллером.

Русский

2015-02-05

205 KB

1 чел.

Интерфейс ATA

ATA (Advanced Technology Attachment, Присоединение по улучшенной технологии) — параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. В 90-е годы XX века был стандартом де факто на платформе IBM PC; в настоящее время (2007) вытесняется своим последователем — SATA. Разные версии ATA известны под синонимами IDE, EIDE, UDMA, ATAPI; с появлением SATA также получил название PATA (Parallel ATA).

Разъемы ATA-контроллера на материнской плате

80-проводные шлейфы ATA с кабельной выборкой

Предварительное название интерфейса было PC/AT Attachment ("Соединение с PC/AT"), так как он предназначался для подсоединения к 16-битной шине ISA, известной тогда как шина AT. В окончательной версии название переделали в «AT Attachment» для избежания проблем с торговыми марками.

Первоначальная версия стандарта была разработана в 1986 году фирмой Western Digital и по маркетинговым соображениям получила название IDE (Integrated Drive Electronics, «Электроника, встроенная в привод»). Оно подчеркивало важное нововведение: контроллер привода располагается в нём самом, а не в виде отдельной платы расширения, как в предшествующем стандарте ST-506 и существовавших тогда интерфейсах SCSI и ST412. Это позволило а)улучшить характеристики накопителей (за счет меньшего расстояния до контроллера), б)упростить управление им (т.к. контроллер канала IDE абстрагировался от деталей работы привода) и в)удешевить производство (контроллер привода мог быть рассчитан только на "свой" привод, а не на все возможные; контроллер канала же вообще становился стандартным). Следует отметить, что контроллер канала IDE правильнее называть хост-адаптером, поскольку он перешел от прямого управления приводом к обмену данными с ним по протоколу.

В стандарт АТА определен интерфейс между контроллером и накопителем, а также передаваемые по нему команды.

Интерфейс имеет 8 регистров, занимающих 8 адресов в пространстве ввода-вывода. Ширина шины данных составляет 16 бит. Количество каналов, присутствующих в системе, может быть больше 2. Главное, чтобы адреса каналов не пересекались с адресами других устройств ввода-вывода. К каждому каналу можно подключить 2 устройства (master и slave), но в каждый момент времени может работать лишь одно устройство. Принцип адресации CHS заложен в названии. Сперва блок головок устанавливается позиционером на требуемую дорожку (Cylinder), после этого выбирается требуемая головка (Head), а затем считывается информация из требуемого сектора (Sector).

Стандарт EIDE (Enhanced IDE, т. е. «расширенный IDE»), появившийся вслед за IDE, позволял использование приводов ёмкостью, превышающей 528 МБ (504 МиБ), вплоть до 8,4 ГБ. Хотя эти аббревиатуры возникли как торговые, а не официальные названия стандарта, термины IDE и EIDE часто употребляются вместо термина ATA. После введения в 2003 году стандарта Serial ATA («Последовательный ATA»), традиционный ATA стали именовать Parallel ATA, имея в виду способ передачи данных по 40-жильному кабелю.

Поначалу этот интерфейс использовался с жёсткими дисками, но затем стандарт был расширен для работы и с другими устройствами, в основном — использующими сменные носители. К числу таких устройств относятся приводы CD-ROM и DVD-ROM, ленточные накопители, а также дискеты большой ёмкости, такие, как ZIP и магнитооптические диски (LS-120/240). Этот расширенный стандарт получил название Advanced Technology Attachment Packet Interface (ATAPI), в связи с чем полное наименование стандарта выглядит как ATA/ATAPI.

Первоначальные расширения ATA для работы с приводами CD-ROM не обладали полной совместимостью, являлись фирменными. В результате, для подключения CD-ROM было необходимо устанавливать отдельную плату расширения, специфичную для конкретного производителя, например для Panasonic (существовало не менее 5 специфичных вариантов ATA, предназначенных для подключения CD-ROM). Некоторые варианты звуковых карт, например Sound Blaster, оснащались именно такими портами.

Другим важным этапом в развитии ATA стал переход от PIO1 (Programmed input/output, Программный ввод/вывод) к DMA (Direct memory access, Прямой доступ к памяти). При использовании PIO считыванием данных с диска управлял центральный процессор компьютера (CPU), что приводило к повышенной нагрузке на процессор и замедлению работы в целом. По причине этого компьютеры, использующие интерфейс ATA, обычно выполняли операции, связанные с диском, медленнее, чем компьютеры, использующие SCSI и другие интерфейсы. Введение DMA существенно снизило затраты процессорного времени на операции с диском. В данной технологии потоком данных управляет сам накопитель, считывая даные в память или из памяти почти без участия CPU, который выдает лишь команды на выполнение того или иного действия. При этом жесткий диск выдает сигнал запроса DMARQ на операцию DMA контроллеру. Если операция DMA возможна, контроллер выдает сигнал DMACK и жесткий диск начинает выдавать данные в 1-й регистр (DATA), с которого контроллер считывает данные в память без участия процессора. Операция DMA возможна, если режим поддерживается одновременно BIOS, контроллером и операционной системой, в противном случае возможен лишь режим PIO.

В дальнейшем развитии стандарта (АТА-3) был введен дополнительный режим UltraDMA 2 (UDMA 33). Этот режим имеет временные характеристики DMA Mode 2, однако данные передаются и по переднему, и по заднему фронту сигнала DIOR/DIOW. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на четность CRC, что повышает надёжность передачи информации.

В истории развития ATA был ряд барьеров, связанных с организацией доступа к данным. Большинство из этих барьеров, благодаря современным системам адресации и технике программирования, были преодолены. К их числу относятся ограничения на максимальным размер диска в 504 МБ, ~8 ГБ, ~32 ГБ, и 128 ГБ. Существовали и другие барьеры, в основном связанные с драйверами устройств, и организацией ввода/вывода в операционных системах, не соответствующих стандартам ATA.

Оригинальная спецификация АТА предусматривала 28-битный режим адресации. Это позволяло адресовать 228 (268 435 456) секторов по 512 байт каждый, что давало максимальную ёмкость в 137 ГБ (128 ГБ). В стандартных PC BIOS поддерживал до 7,88 ГБ (8,46 ГБ), допуская максимум 1024 цилиндра, 256 головок и 63 сектора. Это ограничение на число цилиндров/головок/секторов CHS (Cyllinder-Head-Sector) в сочетании со стандартом IDE привело к ограничению адресуемого пространства в 504 МБ (528 МБ). Для преодоления этого ограничения была введена схема адресации LBA2 (Logical Block Address), что позволило адресовать до 7,88 ГБ. Со временем и это ограничение было снято, что позволило адресовать сначала 32 ГБ, а затем и все 128 ГБ, используя все 28 разрядов (в АТА-4) для адресации сектора. Запись 28-битного числа, организована путем записи его частей в соответствующие регистры накопителя (с 1 по 8 бит в 4-й регистр, 9-16 в 5-й, 17-24 в 6-й и 25-28 в 7-й).

Адресация регистров организована при помощи трех адресных линий DA0-DA2. 1-й регистр с адресом 0 является 16-разрядный, и используется для передачи данных между диском и контроллером. Остальные регистры 8-битные и используются для управления.

Новейшие спецификации ATA предполагают 48-битную адресацию, расширяя таким образом возможный предел до 128 ПБ (144 петабайт). Однако файловые системы большинства современных операционных систем поддерживают диски объёмом лишь до 2 ТБ.

Эти ограничения на размер могут проявляться в том, что система думает, что объём диска меньше его реального значения, или вовсе отказывается загружаться и виснет на стадии инициализации жёстких дисков. В некоторых случаях проблему удаётся решить обновлением BIOS. Другим возможным решением является использование специальных программ, таких, как Ontrack DiskManager, загружающих в память свой драйвер до загрузки операционной системы. Недостатком таких решений является то, что используется нестандартная разбивка диска, при которой разделы диска оказываются недоступны, в случае загрузки, например, с обычной DOS-овской загрузочной дискеты. Впрочем, многие современные операционные системы (начиная от Windows NT4 SP3) могут работать с дисками большего размера, даже если BIOS компьютера этот размер корректно не определяет).

Интерфейс PATA

Для подключения жёстких дисков с интерфейсом PATA обычно используется 40-проводный кабель (именуемый также шлейфом). Каждый шлейф обычно имеет два или три разъёма, один из которых подключается к разъёму контроллера на материнской плате (в более старых компьютерах этот контроллер размещался на отдельной плате расширения), а один или два других подключаются к дискам. В один момент времени шлейф P-ATA передаёт 16 бит данных. Иногда встречаются шлейфы IDE, позволяющие подключение трёх дисков к одному IDE каналу, но в этом случае один из дисков работает в режиме read-only.

Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 (UDMA4) появилась его 80-проводная версия. Все дополнительные проводники — это проводники заземления, чередующиеся с информационными проводниками. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки. Ёмкостная связь являются проблемой при высоких скоростях передачи, поэтому данное нововведение было необходимо для обеспечения нормальной работы установленной спецификацией UDMA4 скорости передачи 66 МБ/с (мегабайт в секунду). Более быстрые режимы UDMA5 и UDMA6 также требуют 80-проводного кабеля.

Хотя число проводников удвоилось, число контактов осталось прежним, как и внешний вид разъёмов. Внутренняя же разводка, конечно, другая. Разъёмы для 80-проводного кабеля должны присоединять большое число проводников заземления к небольшому числу контактов заземления, в то время, как в 40-проводном кабеле проводники присоединяются каждый к своему контакту. У 80-проводных кабелей разъёмы обычно имеют различную расцветку (синий, серый и чёрный), в отличие от 40-проводных, где обычно все разъёмы одного цвета (чаще чёрные).

Стандарт ATA всегда устанавливал максимальную длину кабеля равной 46 см. Это ограничение затрудняет присоединение устройств в больших корпусах, или подключение нескольких приводов к одному компьютеру, и почти полностью уничтожает возможность использования дисков PATA в качестве внешних дисков. Хотя в продаже широко распространены кабели большей длины, следует иметь в виду, что они не соответствуют стандарту. То же самое можно сказать и по поводу «круглых» кабелей, которые также широко распространены. Стандарт ATA описывает только плоские кабели с конкретными характеристиками полного и ёмкостного сопротивлений. Это, конечно, не означает, что другие кабели не будут работать, но, в любом случае, к использованию нестандартных кабелей следует относиться с осторожностью.

Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master), а другое ведомым (англ. slave). Обычно ведущее устройство идет перед ведомым в списке дисков, перечисляемых BIOS’ом компьютера или операционной системы. В старых BIOS’ах (486 и раньше) диски часто неверно обозначались буквами: «C» для ведущего диска и «D» для ведомого.

Если на шлейфе только один привод, он в большинстве случаев должен быть сконфигурирован как ведущий. Некоторые диски (в частности, производства Western Digital) имеют специальную настройку, именуемую single (т. е. «один диск на кабеле»). Впрочем, в большинстве случаев единственный привод на кабеле может работать и как ведомый (такое часто встречается при подключении CD-ROM’а на отдельный канал).

Настройка, именуемая cable select (т. е., «выбор, определяемый кабелем», кабельная выборка), была описана как опциональная в спецификации ATA-1 и стала широко распространена начиная с ATA-5, поскольку исключает необходимость переставлять перемычки на дисках при любых переподключениях. Если привод установлен в режим cable select, он автоматически устанавливается как ведущий или ведомый в зависимости от своего местоположения на шлейфе. Для обеспечения возможности определения этого местоположения шлейф должен быть с кабельной выборкой. У такого шлейфа контакт 28 (CSEL) не подключен к одному из разъемов (серого цвета, обычно средний). Контроллер заземляет этот контакт. Если привод видит, что контакт заземлён (т.е. на нем логический 0), он устанавливается как ведущий, в противном случае (высокоимпедансное состояние) — как ведомый.

Во времена использования 40-проводных кабелей, широко распространилась практика осуществлять установку cable select путём простого перерезания проводника 28 между между двумя разъёмами, подключаемыми к диску. При этом ведомый привод оказывался на конце кабеля, а ведущий в середине. Такое размещение в поздних версия спецификации было даже стандартизировано. К сожалению, когда на кабеле размещается только одно устройство, такое размещение приводит к появлению ненужного куска кабеля на конце, что нежелательно — как из соображений удобства, так и по физическим параметрам: этот кусок приводит к отражению сигнала, особенно на высоких частотах.

80-проводные кабели, введенные для UDMA4, лишены указанных недостатков. Теперь ведущее устройство всегда находится в конце шлейфа, так что, если подключено только одно устройство, не получается этого ненужного куска кабеля. Кабельная выборка же у них «заводская» — сделанная в самом разъёме просто путём исключения данного контакта. Поскольку для 80-проводных шлейфов в любом случае требовались собственные разъёмы, повсеместное внедрение этого не составило больших проблем. Стандарт также требует использования разъёмов разных цветов, для более простой идентификации их как производителем, так и сборщиком. Синий разъем предназначен для подключения к контроллеру, черный — к ведущему устройству, серый — к ведомому.

Термины «ведущий» и «ведомый» были заимствованы из промышленной электроники (где указанный принцип широко используется при взаимодействии узлов и устройств), но в данном случая являются некорректными, и потому не используются в текущей версии стандарта ATA. Более правильно называть ведущий и ведомый диски соответственно device 0 (устройство 0) и device 1 (устройство 1). Существует распространённый миф, что ведущий диск руководит доступом дисков к каналу. На самом деле управление доступом дисков и очерёдностью выполнения команд осуществляют контроллер (которым, в свою очередь, управляет драйвер операционной системы). То есть фактически оба устройства являются ведомыми по отношению к контроллеру.

Версии стандарта ATA, скорость передачи и свойства

В приводимой далее таблице приведены названия версий стандарта ATA, и поддерживаемые ими режимы и скорость передачи. Следует отметить, что скорость передачи, указываемая для каждого стандарта (например, 66,7 МБ/с для UDMA4, именуемого обычно «Ultra-DMA 66») указывает максимальную теоретически возможную скорость в кабеле. Это просто два байта, умноженные на фактическую частоту, и предполагает, что каждый цикл используется для передачи пользовательских данных. На практике скорость, естественно, меньше.

Перегрузка на шине, к которой подключён ATA-контроллер, также может ограничивать максимальный уровень передачи. Например, максимальная пропускная способность шины PCI , работающей на частоте 33 МГц и имеющей разрядность 32 бита, составляет 133 МБ/с, и эта скорость делится между всеми подключёнными к шине устройствами.

Более того, по данным на октябрь 2005 г., не существует ATA-дисков, имеющих устойчивую скорость передачи выше 80 МБ/с. Да и эти тесты не дают реальной картины, поскольку спроектированы так, что при их работе практически не встречается задержек на поиск или время ожидания. В большинстве реальных ситуаций эти два фактора являются во многом определяющими; третьим по важности фактором является пропускная способность шины ATA. Следовательно, скорости свыше 66 МБ/с только тогда оказывают реальное влияние на производительность, когда диск все операции ввода/вывода производит со своим внутренним кэшем — ситуация достаточно необычная, особенно в виду того, что данные в этом случае обычно уже кэшированы операционной системой.

Стандарт

Другие названия

Добавлены режимы передачи (MБ/с)

Максимально поддерживаемый размер диска

Другие свойства

ANSI

Reference

ATA-1

ATA, IDE

PIO 0,1,2 (3.3, 5.2, 8.3) Single-word DMA 0,1,2 (2.1, 4.2, 8.3) Multi-word DMA 0 (4.2)

up to 137 GB

28-bit LBA

X3.221-1994

(obsolete since

1999)

ATA-2

EIDE, Fast ATA, Fast IDE, Ultra ATA

PIO 3,4: (11.1, 16.6)

Multi-word DMA 1,2 (13.3, 16,6)

X3.279-1996

(obsolete since

2001)

ATA-3

EIDE

S.M.A.R.T., Security

X3.298-1997

(obsolete

since 2002)

ATA/ATAPI-4

ATAPI-4, ATA-4, Ultra ATA/33

Ultra DMA 0,1,2 (16.7, 25.0, 33.3)

Ultra-DMA/33

Support for CD-ROM, etc., via ATAPI packet commands

NCITS

317—1998

ATA/ATAPI-5

ATA-5, Ultra ATA/66

Ultra DMA 3,4 (44.4, 66.7)

Ultra DMA 66

80-wire cables

NCITS

340-2000

ATA/ATAPI-6

ATA-6, Ultra ATA/100 Ultra DMA 100

UDMA 5 (100)

up to 144 PB

48-bit LBA Automatic Acoustic Management

NCITS

347—2001

ATA/ATAPI-7

ATA-7, Ultra ATA/133

UDMA 6 (133) Ultra DMA 133 SATA/150

SATA 1.0, Streaming feature set, long logical/physical sector feature set for non-packet devices

NCITS 361—2002

ATA/ATAPI-8

ATA-8

--

in progress

1 Программный ввод/вывод (англ. Programmed input/output, PIO) — режим обмена данными, с участием CPU. За счет чего повышается нагрузка на процессор и замедляется работа в целом. Является технически устаревшим и практически полностью вытеснен более новым режимом DMA.

2 LBA (Logical block addressing) — механизм адресации и доступа к секторам на диске, при котором не различают цилиндры, стороны, сектора на цилиндре. Суть LBA состоит в том, что каждый сектор имеет свой номер. Преимущество — отсутствие ограничения размера диска, ограничивающегося разрядностью LBA, например, в настоящее время для винчестеров размером более 120GB используется 48bit LBA.


 

А также другие работы, которые могут Вас заинтересовать

67492. Технология управления конфликтами 1 MB
  Технология управления конфликтами Рассматриваемые в лекции вопросы Методы диагностики конфликта и их характеристика Методы профилактики конфликта. Социально-психологические и организационные методы предупреждения конфликтов Технология управления процессом протекания конфликта...
67493. Урегулирование конфликтов с участием третьей стороны 396 KB
  Урегулирование конфликтов с участием третьей стороны. Рассматриваемые в лекции вопросы Третья сторона в конфликте: понятие статус предпосылки участия и виды вмешательства Формы участия и степень властных полномочий третьей стороны в урегулировании конфликта.
67494. Переговоры как способ урегулирования конфликтов 658.5 KB
  Во многих исследованиях, посвященных анализу переговорного процесса, термин «переговоры» используется для обозначения широкого круга ситуаций, в которых люди пытаются обсудить те или иные проблемы, согласовать какие-либо действия...
67495. Стили ведения переговоров 314 KB
  Стили ведения переговоров Рассматриваемые в лекции вопросы: Жесткий стиль переговоров и его характеристика. Противодействие тактике жесткого стиля Мягкий стиль ведения переговоров: сущность условия и методики применения Торговый стиль ведения переговоров: особенности и область применения.
67496. Межличностный конфликт 223.5 KB
  Типы конфликтных личностей и способы их нейтрализации Ключевые понятия лекции Деструктивные функции межличностного конфликта Ассертивность Конструктивные функции межличностного конфликта Конфликтные личности Манипуляция Межличностный конфликт Модели поведения личности в конфликте...
67497. Технология управления межгрупповыми конфликтами 580.5 KB
  Политические конфликты в посткоммунистической России: основные линии развертывания конфликтов и механизмы их урегулирования. В той мере в какой его пытаются подавить возрастает его потенциальная злокачественность и тогда взрыв предельно насильственных конфликтов является лишь вопросом времени.
67498. Нормативно-правовое регулирование организационных конфликтов 417 KB
  Специфика конфликта в организации Организационный конфликт рассматривается как специфическая форма взаимодействия между организационными единицами в основе которого лежит некое противоречие. Поскольку конфликт рассматривается как особый тип взаимодействия то мы ограничиваем сферу его возможного...
67499. Социальное партнерство как фактор регулирования социально-трудовых отношений 107 KB
  Социальное партнерство как фактор регулирования социально-трудовых отношений. Рассматриваемые в лекции вопросы Социальное партнерство как фактор регулирования социально-трудовых отношений Ключевые понятия лекции Генеральное соглашение Тарифное соглашение Специальное соглашение Двухсторонняя комиссия...
67500. Рассмотрение и разрешение индивидуальных и коллективных трудовых споров 347 KB
  Примирительные процедуры при трудовых спорах. Этапы рассмотрения коллективного трудового спора. Рассмотрение и разрешение индивидуальных трудовых споров Понятие индивидуального трудового спора Индивидуальный трудовой спор неурегулированные разногласия между работодателем...