77800

МОДЕЛИРОВАНИЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ УРОВНЯ NaOH В БАКЕ

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Целью математического моделирования является определение оптимальных условий протекания процесса, управление им на основе математической модели и перенос результатов на объект. Математической моделью называется приближенное описание какого-либо явления или процесса, выраженное с помощью математической символики.

Русский

2015-02-05

335.5 KB

20 чел.

Министерство образования РФ

Сибирский государственный технологический университет

Факультет автоматизации и информационных технологий

Кафедра автоматизации процессов и производств

МОДЕЛИРОВАНИЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ УРОВНЯ NaOH В БАКЕ

Пояснительная записка

( АПП. 000000. 205 ПЗ )


Министерство образования РФ

Сибирский государственный технологический университет

Факультет автоматизации и информационных технологий

Кафедра автоматизации процессов и производств

Учебная дисциплина: Моделирование процессов автоматизации

Задание

на курсовой проект

Тема: «Модель системы автоматического регулирования уровня NaOH в баке»


Реферат

В курсовом проекте разработаны модели идеального смешания и автоматического регулирования уровня NaOH в резервуаре.

Курсовой проект содержит пояснительную записку из 18 страниц текста, 1 таблицы, 14 рисунков и 4 литературных источника.


Содержание

[1]
Введение

[2]
1 Краткое описание технологического процесса

[3] 1.2 Модель системы автоматического регулирования уровня NaOH в баке

[4]
Заключение

[5]
Список используемой литературы:


Введение

Одной из основных задач химической технологии является создание новых высокоэффективных процессов и совершенствование уже действующих. Ее решение возможно только с помощью разработки и использования систем автоматического проектирования и оптимизации химико-технологических процессов. Развитие систем автоматизированного проектирования обусловлено широким внедрением вычислительной техники и прикладного математического обеспечения. В основе таких систем лежит метод математического моделирования - изучение свойств объекта на математической модели.

Целью математического моделирования является определение оптимальных условий протекания процесса, управление им на основе математической модели и перенос результатов на объект.

Математической моделью называется приближенное описание какого-либо явления или процесса, выраженное с помощью математической символики.

Математическое моделирование включает три взаимосвязанных этапа:

составление математического описания изучаемого объекта;

выбор метода решения системы уравнений математического описания и реализация его в форме моделирующей программы;

установление соответствия (адекватности) модели объекту.

На  этапе составления математического описания предварительно выделяют основные явления и элементы в объекте и затем устанавливают связи между ними. Далее, для каждого выделенного элемента и явления записывают уравнение (или систему уравнений), отражающее его функционирование. Кроме того, в математическое описание включают уравнения связи между различными выделенными явлениями. В зависимости от процесса математическое описание может быть представлено в виде системы алгебраических, дифференциальных, интегральных уравнений.

Этап выбора метода решения и разработки моделирующей программы подразумевает выбор наиболее эффективного метода решения из имеющихся (под эффективностью имеются в виду быстрота получения и точность решения) и реализацию его сначала в форме алгоритма решения, а затем – в форме программы, пригодной для расчета на ЭВМ.

Построенная на основе физических представлений модель должна верно качественно и количественно описывать свойства моделируемого процесса, т.е. она должна быть адекватна моделируемому процессу. Для проверки адекватности математической модели реальному процессу нужно сравнить результаты измерений на объекте в ходе процесса с результатами предсказания модели.


1 Краткое описание технологического процесса

В данном технологическом процессе производится разбавление щелочи HaOH водой до требуемой концентрации. Затем разбавленная щелочь нагревается до необходимой температуры. Данный технологический процесс является небольшим фрагментом производства гипохлорита натрия, который в дальнейшем применяется для отбеливания целлюлозы.

Схема технологического процесса имеет следующий вид:

Данный технологический процесс можно разбить на две модели систем автоматического регулирования:

Модель системы автоматического регулирования уровня NaOH в баке №1.

Модель смесителя №2 (модель идеального перемешивания).

Модель идеального смешения

Опишем аппарат идеального смешения. Представим себе аппарат с мешалкой, через который проходит поток (рисунок 1). Мощность мешалки такова, что поступающая жидкость мгновенно перемешивается с массой, уже находящейся в аппарате. Таким образом, все, что попадает в аппарат идеального смешения, мгновенно распределяется по всему его объему.

Перечислим важнейшие следствия из этого определения:                                             

1. Концентрации всех веществ равномерно распределены по объему аппарата. В любой паре точек в аппарате любая из этих величин имеет одно и то же значение.

2. На выход поток выносит ту жидкость, которая находится в аппарате. Поэтому на выходе из аппарата идеального смешения концентрация та же, что в объеме.

На входе в аппарат концентрация претерпевает скачок: исходные значения параметров потока, мгновенно смешивающегося с содержимым аппарата, соответственно мгновенно изменяются до тех значений, которые характеризуют режим в аппарате и на выходе из него.

3. Время пребывания жидкости в аппарате идеального смешения распределено неравномерно. Действительно, распределяя по объему вошедшую порцию жидкости, наша идеальная мешалка пошлет к выходу некоторые частицы из этой порции и они сразу уйдут из аппарата, в то время, как другие, попавшие в иные части аппарата, могут задерживаться в нем весьма надолго.

Используя то обстоятельство, что концентрация во всех точках аппарата одинакова, можно очень просто записать обобщенное уравнение материального баланса:

ПРИХОД ВЕЩЕСТВА - РАСХОД ВЕЩЕСТВА = НАКОПЛЕНИЕ ВЕЩЕСТВА

Таким образом, уравнение материального баланса для нашей модели идеального смешивания будет иметь следующий вид:

                                  (1.1)

где Q1 и Q2 – расход смешиваемой (в нашем случае NaOH) и смешивающей (H2O) жидкостей соответственно.

      C1 и С2 – концентрация смешиваемой и смешивающей жидкостей соответственно.

       Q и C – расход и концентрация смешанной (вышедшей из аппарата) жидкости.

Перепишем уравнение (1.1) в следующий вид:

                                    (1.2)

Уравнение (1.2) почленно поделим на Q, тогда получим:

                                 (1.3)

В уравнении (1.3)  и , где Т – постоянная времени нашего объекта, а k – коэффициент усиления.

Подставив Т и k в уравнение (1.3) получим уравнение следующего вида:

 

                                (1.4)

Теперь уравнение (1.4) поделим почленно на постоянную времени Т, в результате чего получим:

                             (1.5)

Полученное уравнение (1.5) и будет описывать нашу модель идеального смешения. В соответствии с ним реализуем модель аппарата идеального смешения в пакете Simulink среды MatLab 6.5.

При моделировании необходимо учесть, что величины Q1 и С1 (расход и концентрация NaOH) являются постоянными. Прежде чем моделировать необходимо ввести исходные данные для моделирования.

Таблица 1.1 – Исходные данные для моделирования аппарата идеального смешения.

С1(NaOH), %

Q1(NaOH), м3/сек.

C2(HOH), %

Q2(HOH), м3/сек.

V(смесителя), м3

56,65

0,0006

10

0,0001

0,000785

В  MatLab-е представим нашу модель в следующем виде:

Рисунок 3 – Схема модели идеального смешения в среде MatLab.

Схема состоит из трех основных подсистем: объекта регулирования (Object-mixer), регулятора (ReguLator) и регулирующего органа (R.O.).

В объекте регулирования реализуется дифференциальное уравнение (1.5) посредством блоков суммирования, деления, умножения и интегрирования:

Рисунок 4 – Схема подсистемы (Object-mixer)

С помощью подсистемы, реализирующей регулятор, на вход которого поступает сигнал рассогласования (Delta) с элемента сравнения (EL.Sravneniya) осуществляется формирование управляющего сигнала (U) в диапазоне от 0 до 10 В на регулирующий орган (R.O.). Регулирующий орган, в свою очередь, формирует сигнал (Х), который управляет ходом штока.

Рисунок 5 – Схема подсистемы регулятора (ReguLator).

Звено Saturation в подсистеме регулятора служит для того, чтобы сигнал со звена PID ни в коем случае не мог превысить  0÷10 В (0÷10 В – стандартный выход для электрического регулятора).

Рисунок 6 – Схема подсистемы регулирующего органа (R.O.)

Звено S.U. в схеме R.O. необходимо для того, чтобы согласовать управляющий сигнал с регулятора в управляющий сигнал для двигателя, т.е. S.U. в данном случае выполняет роль усилителя.

На выходе электродвигателя (EL.Dvigatel) частота вращения вала, пропорциональная напряжению на входе (US.U.= 0÷380 В).

В результате реализации схемы получился график следующего вида:

Рисунок 7 – График процесса регулирования процесса идеального смешения.

1.2 Модель системы автоматического регулирования уровня NaOH в баке

В данной модели бака необходимо поддерживать постоянный уровень для того, чтобы расход поступающего в смеситель NaOH был постоянный, что, в свою, очередь требуется для того, чтобы можно было разбавлять NaOH водой в смесителе. Т.е. концентрация NaOH регулируется расходом воды, поступающей в смеситель.

Для того, чтобы смоделировать наш бак, необходимо ввести исходные данные и математически описать резервуар.

где Q – расход (пр – приток, от. - отток)

      μ – коэффициент истечения крана

      f – поперечное сечение трубы

      Х – управляющее воздействие

Исходные данные:

Вещество – NaOH

Удельный вес NaOH γ = 10388 Н/м3

Диаметр бака – 2 м.

Высота бака – 4,5 м.

Диаметр подходящей трубы d1=0.09 м

Диаметр отходящей трубы d2 = 0.1 м

Коэффициент истечения крана на входе μ1=0,3

Коэффициент истечения крана на выходе μ2=0,2

Давление на входе в бак Р1= 65900 кПа

Давление на выходе в бак Р2= 6500 кПа

Уравнение материального баланса для нашей модели будет иметь вид:

Qпр=Qот                                                                                                                (2.1)

Перепишем уравнение баланса в следующем виде:

,                                (2.2)

где Нн – уровень жидкости в рассматриваемом баке

Определим численные значения уравнения (2.2):

                                    (2.3)

Подставим численные значения в уравнение (2.2) и определим величину НН:

       (2.4)

Из уравнения (2.4) определим величину НН, реализовав уравнение (2.4) в MatLab-е:

Расход жидкости Qот при НН= 4,0346431 м:

(2.5)

Вычислим высоту столба жидкости над дном бака ZH, которая будет равна разности между значением НН и высотой столба жидкости НР2, эквивалентного давлению напора Р на линии:

                                        (2.6)

                      (2.7)

Площадь поперечного сечения бака:

                               (2.8)

Зная площадь бака, можно найти объем жидкости в баке:

               (2.9)

Постоянная времени Та:

                               (2.10)

Определим коэффициенты самовыравнивания на притоке и оттоке, для чего перепишем уравнения для притока и оттока следующим образом:

      (2.11)

Коэффициенты самовыравнивания будут равны:

                                      (2.12)

Соответственно коэффициент самовыравнивания объекта равен:

                    (2.13)

Передаточная функция нашего объекта будет иметь вид:

                                                  (2.14)

где  - коэффициент усиления, а  - постоянная времени объекта. Подставим значения К и Т в уравнение (2.14):

                                              (2.15)

Выражение (2.15) и будет являться передаточной функцией бака.

Реализуем нашу модель в среде MatLab. Она будет выглядеть следующим образом:

Рисунок 9 – Модель резервуара

Модель резервуара состоит из четырех подсистем (блока формирования возмущений, функции умножения, регулятора и регулирующего органа) и непосредственно передаточной функции объекта (резервуара с NaOH). Ниже приведены схемы подсистем.

Рисунок 10 – Подсистема блока формирования возмущений.

Рисунок 11 – Подсистема – функция умножения.

Рисунок 12 – Подсистема регулятора.

Рисунок 13 – Подсистема регулирующего органа.

В результате получился следующий график процесса регулирования:

Рисунок 14 – Процесс регулирования бака с NaOH.


Заключение

В данном курсовом проекте были рассмотрены и смоделированы с помощью пакета визуального программирования SIMULINK  (пакет Matlab 6.5) следующие модели систем регулирования объектов химической технологии: модель идеального смешения, модель регулирования уровня NaOH в резервуаре.

Представлены графики зависимости регулируемых величин в зависимости от времени.


Список используемой литературы:

1 Луценко В.А., Финякин Л.Н. Аналоговые вычислительные машины в химии и химической технологии. – М.: Химия, 1979 – 248 с.

2 Машины и аппараты химических производств. Под ред. И.И. Чернобыльского. – М.: Машиностроение, 1974. – 456 с.

3 Закгейм А.Ю. Введение в моделирование химико–технологических процессов. – 2 – е изд., перераб. и доп. – М.: Химия, 1982. – (серия «Химическая кибернетика»)

288 с., ил.

4 Лурье Ю.Ю Справочник по аналитической химии. 5-е изд., перераб. и доп. – М.: Химия. 1979. – 480


 

А также другие работы, которые могут Вас заинтересовать

36872. Исследование дешифраторов 42 KB
  Цель лабораторной работы: исследовать основные способы построения и работу дешифраторов. Задание: снять временные диаграммы определить таблицы состояний и особенности работы дешифраторов. Порядок выполнения: включить персональную ЭВМ запустить на выполнение программный пакет EWB и далее следовать порядку работы в пакете. В отчете приводится наименование и номер лабораторной работы цель работы программа работы с указанием всех необходимых экспериментов полученных результатов их объяснения и выводов.
36873. Фильтрация данных и вычисление итоговых характеристик 151 KB
  Удалите все листы кроме первого исходного листа Реки Украины. Примечание: Уровень оценки Количество листов для копирования Обязательное для выполнения задание 4 4 сортировка 1 условие 1 автофильтр 1 автофильтр 2 5 5 То же что и на 4 сортировка 2 6 7 6 То же что и на 5 сортировка и структура 7 8 7 То же что и на 7 условие 2 9 10 8 То же что и на 7 8 расширенный фильтр 11 12 9 Дополнительно 13 сводных таблицы Задания для выполнения: На листе Сортировка 1 необходимо отсортировать данные таблицы следующим образом: 1...
36875. ИСПОЛЬЗОВАНИЕ ОТНОСИТЕЛЬНОЙ И АБСОЛЮТНОЙ АДРЕСАЦИИ В ВЫЧИСЛЕНИЯХ 197.5 KB
  Переименуйте Лист 1 в Задание 1 и на этом листе создайте таблицу по Образцу 1 значения в ячейках к которым применена заливка серым цветом подсчитать с помощью формул: – в ячейку D2 введите формулу в которой по умолчанию используются относительные адреса ячеек и скопируйте её в ячейки для других товаров D3 D4 с помощью маркера автозаполнения; – в ячейку D5 введите формулу расчета суммы затрат на приобретение товаров; – в ячейку E2 введите формулу: = Стоимость 100 Всего в которой используются относительные адреса ячеек и...
36876. РАБОТА СО СПИСКАМИ: ФИЛЬТРАЦИЯ, СОРТИРОВКА, ИТОГИ, СВОДНЫЕ ТАБЛИЦЫ 64.5 KB
  РАБОТА СО СПИСКАМИ: ФИЛЬТРАЦИЯ СОРТИРОВКАИТОГИ СВОДНЫЕ ТАБЛИЦЫ. Перейти на лист Книжный магазин и скопировать таблицу на листы Итоги1 Итоги2 Итоги3 и Итоги4. На листе Итоги1 сформировать итоги по товарам: в итоги включить сумму значений по столбцам Колво и Доход руб. На листе Итоги2 сформировать итоги по продавцам: в итоги включить сумму значений по столбцам Колво и Доход руб.
36877. РАБОТА С ФОРМУЛАМИ И ФУНКЦИЯМИ В MS EXCEL 527 KB
  Создайте таблицу Результаты тестирования рассчитайте средний показатель тестирования для каждого сотрудника. Создайте таблицу содержащую следующие поля: № п п Фамилия Тест 1 Тест 2 Тест 3 Тест 4 Средний показатель Заполните таблицу данными. Таблица результаты тестирования Рассчитайте Средний показатель тестирования каждого сотрудника. Для этого: Выделите пустую ячейку в поле Средний показатель напротив фамилии первого сотрудника.
36878. Определение ёмкости конденсаторов измерительным мостиком Соти 85 KB
  Тема: Определение ёмкости конденсаторов измерительным мостиком Соти. Цель работы: измерение теплоёмкостей двух конденсаторов проверка закона последовательного и параллельного соединения конденсаторов. Пусть Δφ1 Δφ2 – мгновенные значения напряжений на обкладках конденсаторов а ΔφN ΔφNB – мгновенные значения напряжений на сопротивлениях R1 R2.
36880. Определение заряда иона водорода 63.5 KB
  Тема: Определение заряда иона водорода. Цель работы: изучить прохождение тока в электролитах определить заряд иона водорода оценить погрешность данного метода определения заряда иона водорода и ознакомиться с явлением наводораживания металлов. КРАТКАЯ ТЕОРИЯ Для определения заряда иона водорода можно использовать прохождение тока в электролитах явление электролиза.