78344

Химическое равновесие

Реферат

Химия и фармакология

Необратимые и обратимые химические реакции. Химические реакции можно разбить на две группы: необратимые и обратимые реакции. Необратимые реакции протекают до конца до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью.

Русский

2015-02-07

36.98 KB

3 чел.

Тема: Химическое равновесие.

План:

  1.  Необратимые и обратимые  химические реакции. Химическое равновесие.
  2.  Смещение химического равновесия. Принцип Ле-Шателье.
  3.  Факторы, определяющие направление химических реакций.
  4.  Правило фаз Гиббса
  5.  Сорбция и сорбционные процессы.
  6.  Хроматография.

1.

Химические реакции можно разбить на две группы: необратимые и обратимые реакции. Необратимые реакции протекают до конца — до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью. Это различие связано с тем, что необратимая реакция может протекать только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном направлениях.

Взаимодействие между цинком и концентрированной азотной кислотой. При достаточном количестве азотной кислоты реакция закончатся только тогда, когда весь цинк растворится. Кроме того, если попытаться провести эту реакцию в обратном направлении — пропускать диоксид азота через раствор нитрата цинка, то металлического цника и азотной кислоты не получится — данная реакция не может протекать в обратном направлении. Таким образом, взаимодействие цинка с азотной кислотой — необратимая реакция.

Синтез аммиака. Если смешать один моль азота с тремя молями водорода, осуществить в системе условия, благоприятствующие протеканию реакции, и по истечении достаточного времени произвести анализ газовой смеси, то результаты анализа покажут, что в системе будет присутствовать не только продукт реакции (аммиак), но и исходные вещества (азот и водород). Если теперь в те же условия в качестве исходного вещества поместить не азото-водородную смесь, а аммиак, то можно будет обнаружить, что часть аммиака разложится на азот и водород, причем конечное соотношение между количествами всех трех веществ будет такое же, как в том случае, когда исходили из смеси азота с водородом. Таким образом, синтез аммиака — обратимая реакция.

В уравнениях обратимых реакций вместо знака равенства можно ставить стрелки; они символизируют протекание реакции как в прямом, так и обратном направлениях.

Зависимость скоростей прямой и обратной реакций от времени t. При равенстве этих скоростей наступает химическое равновесие.

По мере протекания реакции исходные вещества расходуются и их концентрации падают. В результате этого уменьшается скорость прямой реакции. Одновременно появляются продукты реакции, и их концентрация возрастает. Вследствие этого начинает идти обратная реакция. Когда скорости прямой и обратной реакций становятся одинаковыми, наступает химическое равновесие. Так, в последнем примере устанавливается равновесие между азотом, водородом и аммиаком.

Химическое равновесие называют динамическим равновесием. Этим подчеркивается, что при равновесии протекают и прямая, и обратная реакции, но их скорости одинаковы, вследствие чего изменений в системе не заметно.

Количественной характеристикой химического равновесия служит величина, называемая константой химического равновесия. Рассмотрим ее на примере реакции синтеза иодо-водорода

Таким образом, при постоянной температуре константа равновесия обратимой реакции представляет собой постоянную величину, показывающую то соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое устанавливается при равновесии.

Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связаны между собою. Изменение концентрации любого из этих веществ влечет за собою изменения концентраций всех остальных веществ; в итоге устанавливаются новые концентрации, но соотношение между ними вновь отвечает константе равновесия.

Численное значение константы равновесия в первом приближении характеризует выход данной реакции, т.е. отношение количества получаемого вещества к тому его количеству, которое получилось бы при протекании реакции до конца.

Величина константы равновесия зависит от природы реагирующих веществ и от температуры. От присутствия катализаторов она не зависит.

2.

Если система находится в состоянии равновесия, то она будет пребывать в нем до тех пор, пока внешние условия сохраняются постоянными. Если же условия изменятся, то система выйдет из равновесия — скорости прямого и обратного процессов изменятся неодинаково — будет протекать реакция. Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в равновесии, давления или температуры.

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1884 году французским ученым Ле-Шателье. Современная формулировка принципа Ле-Шателье такова:

Если на систему,находящуюся в состоянии равновесия, оказать внешнее воздействие, то система перейдет в другое состояние так, чтобы уменьшить эффект внешнего воздействия.

1. Влияние температуры. В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое - эндотермическому.

N2 + 3H2 2NH3 + Q

Прямая реакция - экзотермическая, а обратная реакция - эндотермическая. Влияние изменения температуры на положение химического равновесия подчиняется следующим правилам:

При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры - в направлении экзотермической реакции.

2. Влияние давления. Во всех реакциях с участием газообразных веществ, сопровождающихся изменением объема за счет изменения количества вещества при переходе от исходных веществ к продуктам, на положение равновесия влияет давление в системе.Влияние давления на положение равновесия подчиняется следующим правилам:

При повышении давления равновесие сдвигается в направлении образования веществ (исходных или продуктов) с меньшим объемом;
при понижении давления равновесие сдвигается в направлении образования веществ с большим объемом

Таким образом, при переходе от исходных веществ к продуктам объем газов уменьшился вдвое. Значит, при повышении давления равновесие смещается в сторону образования NH3, о чем свидетельствуют следующие данные для реакции синтеза аммиака при 400 0С:

давление, МПа

0,1

10

20

30

60

100

объемная доля NH3, %

0,4

26

36

46

66

80

3. Влияние концентрации. Влияние концентрации на состояние равновесия подчиняется следующим правилам:

При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;
при повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

3.

Известно, что в механических системах устойчивое равновесие соответствует минимуму потенциальной энергии системы. Так, шарик самопроизвольно скатывается из положения а на наклонной поверхности , причем его потенциальная энергия переходит сначала в кинетическую энергию движения шарика как целого, .а затем в энергию теплового движения молекул. В положении б шарик находится в равновесии.

Естественно предположить, что и химические процессы должны самопроизвольно протекать в направлении уменьшения внутренней энергии системы, т.е. в направлении, отвечающем положительному тепловому эффекту реакции. Действительно, опыт показывает, что при обычных условиях самопроизвольно протекают преимущественно экзотермические реакции.

В отсутствие катализатора скорость этой реакции при обычных условиях крайне мала. Однако при наличии катализатора (например, платинированного асбеста) процесс образования воды протекает с большой скоростью.

Однако попытка объяснить направленность химических процессов только стремлением к минимуму внутренней энергии приводит к противоречиям с фактами. Так, уже при обычных температурах самопроизвольно протекают эндотермические процессы растворения многих солей и некоторые эндотермические химические реакции. С повышением температуры все большее число реакций начинает самопроизвольно протекать в направлении эндотермического процесса; примерами таких реакций могут служить упомянутое выше разложение воды или протекающий при высоких температурах синтез оксида азота(II);

Более того, принцип стремления к минимуму внутренней энергии требует, чтобы все экзотермические реакции доходили до конца, т. е. исключает возможность обратимых реакций; однако такие реакции реально существуют.

Вспомним теперь, что среди механических систем имеются такие, поведение которых тоже нельзя описать только направленностью процессов к достижению минимума потенциальной энергии. Это системы, состоящие из очень большого числа частиц. Например, молекулы, входящие в состав воздуха, распределяются вокруг Земли в виде атмосферы многокилометровой толщины, но не падают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение.

Из громадного числа частиц состоят и химические системы. Поэтому неудивительно, что и здесь тенденция к достижению минимума внутренней энергии не является единственным фактором,, определяющим их поведение.

4.

Правило фаз Гиббса (правило фаз), для любой термодинамически равновесной системы число параметров состояния (v), к-рые можно изменять, сохраняя число существующих фаз (j) неизмененным, определяется выражением:

v=k+n-j,

где k — число компонентов системы, n — число параметров состояния системы, имеющих одно и то же значение во всех фазах (обычно темп-pa Т и давление р).

Величину v иногда наз. вариантностью системы. Правило фаз было выведено Дж. У. Гиббсом (1876) из условий термодинамического равновесия многокомпонентных систем.

Правило справедливо при след. предположениях: 1) фазы имеют достаточно большие размеры, так что поверхностными явлениями можно пренебречь; 2) каждый компонент может проходить через поверхности раздела фаз (полупроницаемые перегородки отсутствуют). Если равновесное состояние системы определяется двумя параметрами (напр., Т и р), то v=k+2-j. Значения v<0 не имеют физ. смысла, следовательно, j£k+2, т. е. число фаз, сосуществующих в равновесии, не может превосходить числа независимых компонентов более чем на 2. При v=0 (безвариантная, или нонвариантная, система) равновесие имеет место при вполне определ. значениях Т, р к составах каждой фазы. Условие v=0 определяет, следовательно, наибольшее возможное число фаз (jмакс) в равновесной системе, составленной из определ. числа компонентов. Для k=1 (индивидуальное в-во, напр. вода) jмакс=3 (в равновесии могут находиться пар, лёд, вода, см. Тройная точка), для k=2 (бинарная система, напр. вода и соль) jмакс=4 (соль, лёд, жидкий р-р, пар) и т. д. При v=1 (одновариантная, или моновариантная, система) одну из переменных, напр. Т, можно варьировать, тогда др. переменные (р, концентрации) в условиях равновесия будут полностью определяться темп-рой.

5.

Со́рбция (от лат. sorbeo — поглощаю) - поглощение твёрдым телом или жидкостью вещества из окружающей среды.

Поглощающее тело называется сорбентом , поглощаемое им вещество — сорбатом (или сорбтивом). В зависимости от механизма сорбции различают:

Адсорбция (от лат. ad — на, при и sorbeo — поглощаю) -поглощение к.-л. вещества из газообразной среды или раствора поверхностным слоем жидкости или твёрдого тела. Например, если поместить в водный раствор уксусной кислоты кусочек угля, то произойдёт.

Абсорбция (лат. absorptio — поглощение, от absorbeo — поглощаю- поглощение веществ из газовой смеси жидкостями. При абсорции. абсорбент поглощает всем своим объёмом. Скорость А. зависит от того, насколько концентрация поглощаемого газа в газовой смеси превосходит концентрацию этого компонента над раствором.

Хемосорбция - химическая сорбция, поглощение жидкостью или твёрдым телом веществ из окружающей среды, сопровождающееся образованием химических соединений. В более узком смысле хемосорбция. рассматривают как химическое поглощение вещества поверхностью твёрдого тела, т. е. как химическую адсорбцию.

Капиллярная конденсация - конденсация пара в капиллярах и микротрещинах пористых тел или в промежутках между тесно сближенными твёрдыми частицами. Необходимым условием К. к. является смачивание  жидкостью поверхности тела (частиц). К. к. начинается с адсорбции молекул пара поверхностью конденсации и образования менисков жидкости. При вогнутой форме менисков давление насыщенного пара над ними, согласно Кельвина уравнению , ниже, чем давление насыщенного пара po над плоской поверхностью. В результате К. к. происходит при более низких давлениях пара, чем давление насыщения po.

6.

Хроматография (от греч. chroma, родительный падеж chromatos — цвет, краска и... графия), физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами — неподвижной и подвижной (элюент), протекающей через неподвижную.

Основные виды Х. В зависимости от природы взаимодействия, обусловливающего распределение компонентов между элюентом и неподвижной фазой, различают следующие основные виды Х. — адсорбционную, распределительную, ионообменную, эксклюзионную (молекулярно-ситовую) и осадочную. Адсорбционная Х. основана на различии сорбируемости разделяемых веществ адсорбентом (твёрдое тело с развитой поверхностью); распределительная Х. — на разной растворимости компонентов смеси в неподвижной фазе (высококипящая жидкость, нанесённая на твёрдый макропористый носитель) и элюенте (следует иметь в виду, что при распределительном механизме разделения на перемещение зон компонентов частичное влияние оказывает и адсорбционное взаимодействие анализируемых компонентов с твёрдым сорбентом); ионообменная Х. — на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и компонентами разделяемой смеси; эксклюзионная (молекулярно-ситовая) Х. — на разной проницаемости молекул компонентов в неподвижную фазу (высокопористый неионогенный гель). Эксклюзионная Х. подразделяется на гель-проникающую (ГПХ), в которой элюент — неводный растворитель, и гель-фильтрацию, где элюент — вода. Осадочная Х, основана на различной способности разделяемых компонентов выпадать в осадок на твёрдой неподвижной фазе.

В соответствии с агрегатным состоянием элюента различают газовую и жидкостную Х. В зависимости от агрегатного состояния неподвижной фазы газовая Х. бывает газо-адсорбционной (неподвижная фаза — твёрдый адсорбент) и газожидкостной (неподвижная фаза — жидкость), а жидкостная Х. — жидкостно-адсорбционной (или твёрдо-жидкостной) и жидкостно-жидкостной. Последняя, как и газо-жидкостная, является распределительной Х. К твёрдо-жидкостной Х. относятся тонкослойная и бумажная.

Различают колоночную и плоскостную Х. В колоночной сорбентом заполняют специальные трубки — колонки, а подвижная фаза движется внутри колонки благодаря перепаду давления. Разновидность колоночной Х. — капиллярная, когда тонкий слой сорбента наносится на внутренние стенки капиллярной трубки. Плоскостная Х. подразделяется на тонкослойную и бумажную. В тонкослойной Х. тонкий слой гранулированного сорбента или пористая плёнка наносится на стеклянную или металлическую пластинки; в случае бумажной Х. используют специальную хроматографическую бумагу. В плоскостной Х. перемещение подвижной фазы происходит благодаря капиллярным силам.

При хроматографировании возможно изменение по заданной программе температуры, состава элюента, скорости его протекания и др. параметров.

Х. широко применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в т. ч. промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов.

Газовая Х. применяется для газов разделения, определения примесей вредных веществ в воздухе, воде, почве, промышленных продуктах; определения состава продуктов основного органического и нефтехимического синтеза, выхлопных газов, лекарственных препаратов, а также в криминалистике и т.д. Разработаны аппаратура и методики анализа газов в космических кораблях, анализа атмосферы Марса, идентификации органических веществ в лунных породах и т.п.

Газовая Х. применяется также для определения физико-химических характеристик индивидуальных соединений: теплоты адсорбции и растворения, энтальпии, энтропии, констант равновесия и комплексообразования; для твёрдых веществ этот метод позволяет измерить удельную поверхность, пористость, каталитическую активность.

Жидкостная Х. используется для анализа, разделения и очистки синтетических полимеров, лекарственных препаратов, детергентов, белков, гормонов и др. биологически важных соединений. Использование высокочувствительных детекторов позволяет работать с очень малыми количествами веществ (10-11—10-9 г), что исключительно важно в биологических исследованиях. Часто применяется молекулярно-ситовая Х. и Х. по сродству; последняя основана на способности молекул биологических веществ избирательно связываться друг с другом.

Тонкослойная и бумажная Х. используются для анализа жиров, углеводов, белков и др. природных веществ и неорганических соединений.

В некоторых случаях для идентификации веществ используется Х. в сочетании с др. физико-химическими и физическими методами, например с масс-спектрометрией, ИК-, УФ-спектроскопией и др. Для расшифровки хроматограмм и выбора условий опыта применяют ЭВМ.


 

А также другие работы, которые могут Вас заинтересовать

7699. Закономерности физического и духовного развития 30.5 KB
  Закономерности физического и духовного развития. Развитие - 1. процесс и результат количественных и качественных изменений человека 2. процесс физического, психического, социального с...
7700. Исторический обзор организационных форм обучения 65.5 KB
  Тема: Исторический обзор организационных форм обучения Под организационной формой обучения понимают способ внешней организации деятельности учителя и учащихся в процессе обучения (например: урок, факультатив, экскурсия, консультация, дополнительные ...
7701. Контроль результатов обучения 35.82 KB
  Тема: Контроль результатов обучения. План Функции контроля знаний Виды контроля Методы контроля Формы контроля знаний 1. Функции контроля знаний Контроль - обязательная часть процесса обучения, это инструмент, измеряющий резу...
7702. Методы педагогического исследования и опыт их применения студентами 45.3 KB
  ТЕМА: Методы педагогического исследования и опыт их применения студентами. Под педагогическим исследованием понимается процесс и результат научной деятельности, направленный на получение новых знаний о закономерностях образования, его структуре, ме...
7703. Характеристика наглядных методов обучения 28.67 KB
  ТЕМА: Характеристика наглядных методов обучения. План 1. Понятие о методах обучения. Выбор методов обучения. Сущность и содержание наглядных методов обучения. 1. Понятие о методах обучения. Метод(от греч. слова metodos путь к чему...
7704. Нестандартные уроки 25.71 KB
  ТЕМА: Нестандартные уроки. С середины 1970-х гг. в отечественной школе обнаружилась опасная тенденция снижения интереса школьников к занятиям. Отчуждение учащихся от познавательного труда педагоги пытались остановить различными способами. На обостре...
7705. Общая характеристика педагогической профессии 90.5 KB
  Общая характеристика педагогической профессии. План. История профессии. Социальная значимость профессии педагога. Профессионально-значимые качества личности педагога и профессиональные противопоказания. История профессии. Про...
7707. Объект, предмет, задачи педагогической науки. Основные педагогические категории 96.5 KB
  Объект, предмет, задачи педагогической науки. Основные педагогические категории. План Педагогика как наука о воспитании. Понятийный аппарат педагогики. Система педагогических наук. Связь педагогики с другими...