78518

Понятие, назначение и основные принципы организации распределенной обработки информации. Архитектура, свойства и характеристики распределенных систем

Доклад

Информатика, кибернетика и программирование

Понятие назначение и основные принципы организации распределенной обработки информации. Под распределенной обработкой информации понимается комплекс операций с информацией проводимый на независимых но связанных между собой ВМ предназначенных для выполнения общих задач. Возможность взаимодействия вычислительных систем при реализации распределенной обработки информации определяют как их способность к совместному использованию данных или к совместной работе с использованием стандартных интерфейсов. Целью распределенной обработки информации...

Русский

2015-02-07

29.5 KB

5 чел.

15. Понятие, назначение и основные принципы организации распределенной обработки информации. Архитектура, свойства и характеристики распределенных систем.

Распределенная система - совокупность независимых компьютеров, которая представляется пользователю единым компьютером (metacomputer), в виде многомашинных вычислительных комплексов и компьютерных сетей представляют собой одну из наиболее прогрессивных форм организации средств вычислительной техники, использование которого не намного сложнее, чем использование персональной ЭВМ.

Под распределенной обработкой информации понимается комплекс операций с информацией проводимый на независимых, но связанных между собой ВМ, предназначенных для выполнения общих задач. Возможность взаимодействия вычислительных систем при реализации распределенной обработки информации определяют как их способность к совместному использованию данных или к совместной работе с использованием стандартных интерфейсов. Целью распределенной обработки информации является оптимизация использования ресурсов и упрощение работы пользователя.

Основные недостатки реализации распределенной обработки информации заключаются в ее зависимости от доступности, надежности, безопасности и характеристик сети.

Преимущества - это возможности распределения и оптимизации использования ресурсов, расширение функциональности и повышение эффективности решения вычислительных задач, гибкость построения распределенных систем и повышение степени их доступности для пользователей. Для достижения целей реальной и эффективной распределенной обработки информации вычислительные системы должны обладать рядом важнейших свойств:  прозрачностью, открытостью; Переносимость приложений; Масштабируемость; Безопасность. Архитектура: с централизованной обработкой информации и децентрализованной обработкой информации, функционирующих в рамках парадигмы построения сетей, называемой моделью клиент/сервер.

Архитектуры: однозвенные, двухзвенные, трехзвенные и т. д. (обычно при числе звеньев более трех архитектуру называют многозвенной). Однозвенная архитектура вырождается в классическую архитектуру с централизованной обработкой информации. В двухзвенной архитектуре приложение разделено на две части: клиентскую и серверную. Обычно сторона клиента содержит логику представления, доступ к данным (как правило СУБД) и сама база данных находятся на стороне сервера. Главными недостатками двухзвенной архитектуры являются необходимость либо наличия высокопроизводительных машин-клиентов (в конфигурации «толстый клиент»), либо относительно высокие требования к производительности сервера (в конфигурации «тонкий клиент. Трехзвенная архитектура позволила более явно отделить прикладную логику от пользовательского интерфейса и уровня баз данных. Так как в трехзвенной архитектуре под бизнес-логику обычно выделяется отдельная машина-сервер, то это повышает гибкость распределенной системы.

Вычислительная среда распределенных приложений может включать в себя множество различных операционных систем, аппаратных платформ, коммуникационных протоколов, баз данных и разнообразных средств разработки. Объединение различных вычислительных систем в рамках единой сети позволяет сформировать специальную вычислительную среду, которая с точки зрения пользователя представляет собой единый виртуальный высокопроизводительный компьютер – метакомпьютер. Метакомпьютер по определению должен обладать набором важных специфических особенностей, отличающих его от традиционного, пусть и очень мощного компьютера. Реальной моделью самого крупного метакомпьютера является сеть Интернет.

Grid – географически распределенная инфраструктура, объединяющая множество ресурсов разных типов, доступ к которым пользователь может получить из любой точки, независимо от места их расположения. В результате деятельности Grid-сообщества разработаны базовые принципы архитектуры Grid и сформулированы функции ее основных уровней. Базовый уровень Grid отвечает за доступ к физическим ресурсам. Связывающий уровень отвечает за проведение надежных и безопасных транзакций между распределенными ресурсами. Ресурсный уровень обеспечивает прием запросов и предоставление общего доступа к ресурсам для приложений. Коллективный уровень отвечает за координирование распределенных ресурсов. Прикладной уровень Grid включает приложения, которые используют нижележащие уровни для доступа к распределенным ресурсам. На любом уровне также могут быть определены протоколы. Сами интерфейсы API реализуются при помощи наборов инструментальных средств для разработки программного обеспечения. Практическую реализацию архитектуры Grid-протоколов иллюстрируют протоколы, определенные в программном обеспечении Globus Toolkit проекта Globus.


 

А также другие работы, которые могут Вас заинтересовать

45278. Идеология и архитектура Softswitch коммутатора 135.5 KB
  Идеология и архитектура Softswitch коммутатора. Рисунок по архитектуре Softswitch является носителем интеллектуальных возможностей сети который координирует управление обслуживанием вызовов сигнализацию и функции обеспечивающие установление соединения через одну или несколько сетей. Фактически Softswitch остается тем же привычным коммутационным узлом но без цифрового коммутационного поля кросса и т. Термин Softswitch был придуман при разработке интерфейса между интерактивной речевой системой IVR и АТС с коммутацией каналов в...
45279. Многоканальные разговорные ИКМ - тракты с временным разделением каналов (ВРК) 136.5 KB
  Многоканальные разговорные ИКМ тракты с временным разделением каналов ВРК. тракты с временным разделением каналов ВРК. Цифровая система передачи ИКМ30 предназначена для формирования абонентских и соединительных линий ГТС и пригородной связи и позволяет организовать до 30 каналов ТЧ по парам низкочастотного кабеля ГТС а при наличии соответствующего оборудования сопряжения и линейного тракта каналоформирующая аппаратура ИКМ30 может использоваться для систем передачи по оптическим кабелям. Остальные 30 каналов используются для...
45280. Архитектура и интерфейсы GSM (мобильная станция, подсистема базовых станций, центр коммутации, домашний и визитный регистры) 62.5 KB
  Центр коммутации осуществляет постоянное слежение за подвижными станциями используя домашний регистр местоположения HLR и визитный регистр местоположения VLR. Ведется регистрация данных об изменении местоположения и роуминге блуждании абонента включая данные о временном идентификационном номере подвижного абонента TMSI Temporry Mobile Subscriber Identity и соответствующем визитном регистре местоположения VLR. Местоположение мобильных станций находится обычно в форме адреса данной мобильной станции в VLR. К данным содержащимся...
45281. Архитектура и интерфейсы GSM (регистры защиты и аутентификации, оборудование эксплуатации и технического обслуживания) 111.5 KB
  Сеть GSMвключает 3 основные части: мобильные станции MSкоторые перемещаются вместе с абонентом; подсистема базовых станций BSкоторая управляет радиолинией связи с мобильной станцией; подсистема сети SSS главную часть которой составляет центр коммутации мобильной связи MSC он выполняет коммутацию между мобильными станциями а также между мобильными или стационарными сетевыми пользователями. Регистр идентификации оборудования база данных которая содержит список всей допустимой к обслуживанию подвижной аппаратуры на сети...
45282. Основные принципы организации сети GSM (интерфейсы, географические зоны, использование частот) 251 KB
  Основные принципы организации сети GSM интерфейсы географические зоны использование частот. Внутренние интерфейсы GSM Внутренние интерфейсы показаны и перечислены в таблице Таблица 1. Типы внутренних интерфейсов сети GSM Тип Связь между устройствами MSCBSS bis BSCBTS B MSCVLR C MSCHLR D HLRVLR E MSCMSC O BSCOMC M BSCTCE Um MSBTS X OMCOMC Примечание: Xинтерфейс предназначен для связи OMC различных GSM Аинтерфейс. Интерфейс между MSC и BSS подсистема базовых станций BSC BTS обеспечивает передачу сообщений для управления...
45283. Каналы сигнализации и трафика в системе GSM (состав принципы использования) 88.5 KB
  Каналы сигнализации и трафика в системе GSM состав принципы использования. Очевидно что использование радиоканалов в мобильной сети GSM отличается от их применения в стационарной сети. Принцип использования каналов в системе GSM показан на рис. В стационарной сети абонентские линии абонентские каналы трафика закреплены за телефонным аппаратом.
45284. Коммутация в GSM (пример обслуживания вызова от абонента ТфОП к абоненту мобильной сети) 88 KB
  Обслуживание вызова от абонента стационарной сети к абоненту мобильной сети GSM В рассматриваемом примере порядок действий следующий: Входящий вызов поступает от стационарной сети ТфОП на вход шлюза MSC GMSC Gtewy MSC. Он передается назад в HLR GMSC. Затем соединение переключается к соответствующему MSC. MSC вырабатывает запрос VLR.
45285. Частотный план сетей UMTS/LTE и его развитие в LTE Advanced. Архитектура сети LTE. Назначение подсистем и узлов. Отличия от сети UMTS. Протоколы интерфейса S1 сети LTE 977 KB
  Для внедрения решений ВКР-07 по системам мобильной связи семейства IMT (LTE) рабочие группы Партнерского проекта 3GPP и ETSI определили в технических спецификациях 17 полос радиочастот для режима FDD и 8 полос для режима TDD (табл. 2.7) 124]. Кроме того, эти диапазоны также входят в число диапазонов, определенных в рекомендациях МСЭ для развития сетей мобильного беспроводного доступа третьего и четвертого поколени2
45286. Эталонная архитектура базовой сети LTE. Функции базовой сети SAE. Взаимодействие сети LTE с другими сетями. Физические, транспортные и логические, каналы сети E-UTRAN вниз и вверх 12.45 MB
  Эталонная архитектура базовой сети LTE. Функции базовой сети SE. Взаимодействие сети LTE с другими сетями. Физические транспортные и логические каналы сети EUTRN вниз и вверх.