789

Исследование асинхронного двигателя с фазным ротором

Лабораторная работа

Производство и промышленные технологии

Получение практических навыков по эксплуатации, опытному и расчетному методам определения рабочих и механических характеристик асинхронного двигателя с фазным ротором, а также по оценке его эксплуатационных свойств.

Русский

2013-01-06

282.5 KB

174 чел.

Министерство образования и науки Российской Федерации

ФГБОУ ВПО «Самарский Государственный Технический Университет»

Лабораторная работа №2

«Исследование асинхронного двигателя с фазным ротором»

Выполнил: студент 3-ЭТ-6

Степашкин Иван

Приняли:

Зубков Ю.В.

Верещагин В.Е.

Самара 2012

Цель работыполучить практические навыки по эксплуатации, опытному и расчетному методам определения рабочих и механических характеристик асинхронного двигателя с фазным ротором, а также по оценке его эксплуатационных свойств.

Программа работы

1. Изучить устройство и элементы конструкции двигателя.

2. Определить экспериментально механические (естественную и искусственную с введенным в цепь ротора добавочным сопротивлением) характеристики двигателя.

3. Выполнить опыт холостого хода.

4. Выполнить опыт короткого замыкания.

5. Определить рабочую и механическую характеристики расчетным путем по круговой диаграмме.

Паспортные данные испытуемого двигателя

Номинальная потребляемая активная мощность = 98 Вт

Номинальная полезная механическая мощность = 35 Вт

Номинальное напряжение = 220 В

Номинальный ток обмотки статора = 0,35 А

Номинальный коэффициент мощности = 0,73

Номинальный коэффициент полезного действия = 0,36

Число пар полюсов = 2

Механические потери = 20 Вт

Магнитные потери = 33 Вт

Активное сопротивление фазы обмотки статора = 22,2 Ом

2.1. Определение естественной  при =,  и искусственной  при , =,  механических характеристик
трехфазного асинхронного двигателя с фазным ротором

2.1.1. Электрические схемы соединений

Рис. 2.1.1. Электрическая схема соединений тепловой защиты машины переменного тока

 

Рис. 2.1.2. Электрическая схема соединений для определения

механических характеристик
2.1.2. Перечень аппаратуры

Таблица 2.1.1

Обозначение

Наименование

Тип

Параметры

G1

Трехфазный источник питания

201.2

~ 400 В / 16 А

G2

Источник питания двигателя

постоянного тока

206.1

- 0…250 В /

3 А (якорь) /

- 200 В / 1 А (возбуждение)

G4

Машина постоянного тока

101.2

90 Вт / 220 В /

0,56 А (якорь) /

2×110 В / 0,25 А (возбуждение)

G5

Преобразователь угловых перемещений

104

6 вых. каналов / 2500 импульсов

за оборот

М1

Машина переменного тока

102.1

100 Вт / ~ 230 В /

1500 об/мин

А2, А7

Трёхфазная трансформаторная группа

347.1

3´80 В×А;

230 В / 242, 235, 230, 226, 220, 133, 127 В

А6

Трехполюсный выключатель

301.1

~ 400 В / 10 А

А9

Реостат для цепи ротора машины переменного тока

307.1

3 ´ 0…40 Ом / 1 А

А10

Активная нагрузка

306.1

220 В / 3´0…50 Вт

Р1

Блок мультиметров

508.2

3 мультиметра

0...1000 В /

0...10 А /

0…20 Мом

Р2

Измеритель мощностей

507.2

15; 60; 150; 300; 600 В /

0,05; 0,1; 0,2; 0,5 А.

Р3

Указатель частоты вращения

506.2

-2000…0…2000 об/мин

2.1.3. Описание электрической схемы соединений

Источник G1 – источник синусоидального напряжения промышленной частоты.

Источник питания G2 двигателя постоянного тока используется для питания нерегулируемым напряжением обмотки возбуждения машины постоянного тока G4, работающей в режиме генератора с независимым возбуждением и выступающей в качестве нагрузочной машины.

Преобразователь угловых перемещений G5 генерирует импульсы, поступающие на вход указателя частоты вращения Р3 электромашинного агрегата.

Испытуемый асинхронный двигатель М1 получает питание через выключатель А6 и трехфазные трансформаторные группы А2, А7 от трехфазного источника питания G1.

Реостат А9 служит для вывода энергии скольжения при испытании двигателя М1 с фазным ротором.

Активная нагрузка А10 используется для нагружения генератора G4.

С помощью мультиметра блока Р1 контролируется ток статорной обмотки и линейное напряжение испытуемого двигателя М1.

С помощью измерителя Р2 контролируются активная мощность, потребляемая испытуемым двигателем М1.

2.1.4. Указания по проведению эксперимента

  •  Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
  •  Соберите электрическую схему соединений тепловой защиты машины переменного тока.
  •   Соедините гнезда защитного заземления  устройств, используемых в эксперименте, с гнездом "РЕ" трехфазного источника питания G1.
  •  Соедините аппаратуру в соответствии с электрической схемой соединений.
  •  Переключатели режима работы источника G2 и выключателя А6 установите в положение "РУЧН.".
  •  Регулировочные рукоятки реостата А9 поверните против часовой стрелки до упора.
  •   Регулировочную рукоятку источника G2 поверните до упора против часовой стрелки, а регулировочные рукоятки активной нагрузки А10 – по часовой стрелке.
  •  Включите выключатели «СЕТЬ» блоков, задействованных в эксперименте.
  •  Активизируйте мультиметры блока Р1, задействованные в эксперименте.
  •  Включите источник G1. О наличии напряжений фаз на его выходе должны сигнализировать светящиеся лампочки.
  •  Установите переключателем в трехфазных трансформаторных группах А2, А7 такие напряжения вторичных обмоток трансформаторов, чтобы напряжение, измеренное вольтметром Р1.3, было равно номинальному напряжению двигателя М1.
  •  Осуществите пуск двигателя М1 нажатием кнопки «ВКЛ.» выключателя А6.
  •  Нажмите кнопку "ВКЛ." источника G2.
  •  Вращая регулировочную рукоятку источника G2 , изменяйте ток  статорной обмотки двигателя М1 и заносите показания амперметра Р1.1 (ток ), ваттметра измерителя мощностей Р2 (активная мощность  фазы двигателя М1) и указателя Р3 (частота вращения  двигателя М1) в табл. 2.1.2, определяя естественную механическую характеристику.

  Таблица 2.1.2

Естественная характеристика при U=U1n=216 В

, А

0.505

0.52

0.533

0.55

0.57

0.583

, Вт

18

30

38

40

50

50

, об/мин

1450

1390

1380

1320

1310

1290

Регулировочную рукоятку источника G2 поверните до упора против часовой стрелки.

  •  Установите суммарное сопротивление каждой фазы реостата А9 20 Ом.
  •  Вращая регулировочную рукоятку источника G2, изменяйте ток  статорной обмотки двигателя М1 и заносите показания амперметра Р1.1 (ток ), ваттметра измерителя мощностей Р2 (активная мощность  фазы двигателя М1) и указателя Р3 (частота вращения  двигателя М1) в табл. 2.1.3, определяя искусственную механическую характеристику.

Таблица 2.1.3

Искусственная характеристика при Rдоб=20 Ом

, А

0.5

0.51

0.52

0.53

0.536

, Вт

18

30

32

38

40

, об/мин

1390

1110

1050

950

890

Снимите искусственную характеристику при суммарном сопротивлении каждой фазы реостата А9 40 Ом.

 Искусственная характеристика при Rдоб=40 Ом

, А

0.5

0.505

0.507

0.51

0.515

0.519

, Вт

17

27

29

30

31

33

, об/мин

1310

950

900

840

750

650

  •  По завершении эксперимента отключите выключатель А6 и источник G1.

2.2. Опыт короткого замыкания трехфазного асинхронного двигателя
с фазным ротором

2.2.1. Электрическая схема соединений

Рис. 2.2.1. Электрическая схема соединений для опыта короткого замыкания

2.2.2. Перечень аппаратуры

Таблица 2.2.1

Обозначение

Наименование

Тип

Параметры

G1

Трехфазный источник питания

201.2

~ 400 В / 16 А

G5

Преобразователь угловых перемещений

104

6 вых. каналов / 2500 импульсов

за оборот

М1

Машина переменного тока

102.1

100 Вт / ~ 230 В /

1500 об/мин

М2

Машина постоянного тока

101.2

90 Вт / 220 В /

0,56 А (якорь) /

2×110 В / 0,25 А (возбуждение)

А2,А7

Трёхфазная трансформаторная группа

347.1

3´80 В×А;

230 В / 242, 235, 230, 226, 220, 133, 127 В

А6

Трехполюсный выключатель

301.1

~ 400 В / 10 А

Р1

Блок мультиметров

508.2

3 мультиметра

0...1000 В /

0...10 А /

0…20 Мом

Р2

Измеритель мощностей

507.2

15; 60; 150; 300; 600 В /

0,05; 0,1; 0,2; 0,5 А

Р3

Указатель частоты вращения

506.2

-2000…0…2000 об/мин

2.2.3. Описание электрической схемы соединений

Источник G1 – источник синусоидального напряжения промышленной частоты.

Преобразователь угловых перемещений G5 генерирует импульсы, поступающие на вход указателя частоты вращения Р3 электромашинного агрегата.

Испытуемый асинхронный двигатель М1 получает питание через выключатель А6 и трехфазные трансформаторные группы А2, А7 от трехфазного источника питания G1.

С помощью мультиметров блока Р1 контролируются ток и напряжение статорной обмотки испытуемого двигателя М1.

С помощью измерителя Р2 контролируются активная и реактивная мощности, потребляемые испытуемым двигателем М1.

2.2.4. Указания по проведению эксперимента

  •  Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
  •  Снимите кожух, закрывающий муфту, соединяющую вал машины постоянного тока М2 с валом двигателя М1, и закрепите на ней стопорное устройство.
  •  Соберите электрическую схему соединений тепловой защиты машины переменного тока.
  •  Соедините гнезда защитного заземления  устройств, используемых в эксперименте, с гнездом "РЕ" трехфазного источника питания G1.
  •  Соедините аппаратуру в соответствии с электрической схемой соединений.
  •  Переключатель режима работы выключателя А6 установите в положение "РУЧН.".
  •  Включите выключатели «СЕТЬ» блоков, задействованных в эксперименте.
  •  Активизируйте мультиметры блока Р1, задействованные в эксперименте.
  •  Включите источник G1. О наличии напряжений фаз на его выходе должны сигнализировать светящиеся лампочки.
  •  Нажатием кнопки «ВКЛ.» выключателя А6 подключите двигатель М1 к электрической сети.
  •  Быстро (менее чем за 10 с) в трехфазных трансформаторных группах А2 и А7 переключателем установите номинальные вторичные напряжения трансформаторов такими, чтобы ток обмотки статора (амперметр Р1.2) был равен номинальному (см. паспортные данные). Считайте и занесите в табл. 2.2.2 показания вольтметра Р1.1 (линейное напряжение  двигателя М1), амперметра Р1.2 (ток  статорной обмотки двигателя М1), а также ваттметра измерителя Р2 (активная  мощность, потребляемая одной фазой двигателя М1) и сразу после этого нажатием кнопки «ОТКЛ» выключателя А6 отключите двигатель М1 от электрической сети.

Таблица 2.2.2

, В

67

, А

0.6

, Вт

  •  Отключите источник G1.
  •  Отключите выключатели «СЕТЬ» блоков, задействованных в эксперименте.

2.3. Опыт холостого хода трехфазного асинхронного двигателя
с фазным ротором

2.3.1. Электрическая схема соединений

Рис. 2.3.1. Электрическая схема соединений для опыта холостого хода

2.3.2. Перечень аппаратуры

Таблица 2.3.1

Обозначение

Наименование

Тип

Параметры

G1

Трехфазный источник питания

201.2

~ 400 В / 16 А

G5

Преобразователь угловых перемещений

104

6 вых. каналов / 2500 импульсов

за оборот

М1

Машина переменного тока

102.1

100 Вт / ~ 230 В /

1500 об/мин

М2

Машина постоянного тока

101.2

90 Вт / 220 В /

0,56 А (якорь) /

2×110 В / 0,25 А (возбуждение)

А2

Трёхфазная трансформаторная группа

347.1

3´80 В×А;

230 В / 242, 235, 230, 226, 220, 133, 127 В

А6

Трехполюсный выключатель

301.1

~ 400 В / 10 А

Р1

Блок мультиметров

508.2

3 мультиметра

0...1000 В /

0...10 А /

0…20 Мом

Р2

Измеритель мощностей

507.2

15; 60; 150; 300; 600 В /

0,05; 0,1; 0,2; 0,5 А

Р3

Указатель частоты вращения

506.2

-2000…0…2000 об/мин

2.3.3. Описание электрической схемы соединений

Источник G1 – источник синусоидального напряжения промышленной частоты.

Преобразователь угловых перемещений G5 генерирует импульсы, поступающие на вход указателя частоты вращения Р3 электромашинного агрегата.

Испытуемый асинхронный двигатель М1 получает питание через выключатель А6 и трехфазную трансформаторную группу А2, А7 от трехфазного источника питания G1.

С помощью мультиметров блока Р1 контролируются ток статорной обмотки и линейное напряжение испытуемого двигателя М1.

С помощью измерителя Р2 контролируются активная и реактивная мощности, потребляемые одной фазой испытуемого двигателя М1.

2.3.4. Указания по проведению эксперимента

  •  Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
  •  Соберите электрическую схему соединений тепловой защиты машины переменного тока.
  •  Соедините гнезда защитного заземления  устройств, используемых в эксперименте, с гнездом "РЕ" трехфазного источника питания G1.
  •  Соедините аппаратуру в соответствии с электрической схемой соединений.
  •  Переключатели трансформаторных групп А2, А7 установите в положение 220В.
  •  Переключатель режима работы выключателя А6 установите в положение "РУЧН.".
  •  Включите выключатели «СЕТЬ» блоков, задействованных в эксперименте.
  •  Активизируйте мультиметры блока Р1, задействованные в эксперименте.
  •  Включите источник G1. О наличии фазных напряжений на его выходе должны сигнализировать светящиеся лампочки.
  •  Подайте напряжение на двигатель М1 нажатием кнопки «ВКЛ.» выключателя А6.
  •  Меняя положение регулировочных рукояток трехфазных трансформаторных групп А2, А7, установите подводимое к двигателю М1 линейное напряжение  равным номинальному (см. паспортные данные). Занесите показания вольтметра Р1.1 (линейное напряжение ), амперметра Р1.2 (фазный ток  двигателя М1), а также ваттметра и варметра измерителя Р2 (активная  и реактивная  мощности, потребляемые одной фазой двигателя М1) в табл. 2.3.2.

Таблица 2.3.2

, В

215

, А

0.508

, Вт

10

, ВАр

65

  •  Отключите источник G1.
  •  Отключите выключатели «СЕТЬ» блоков, задействованных в эксперименте.


 

А также другие работы, которые могут Вас заинтересовать

45877. Изнашивание режущего инструмента в процессе резания. Критерии и кривые износа 168.52 KB
  Изнашивание режущего инструмента в процессе резания. В процессе работы инструмента в результате высокого контактного давления высокой температуры в зоне резания и большой относительной скорости перемещения происходит износ лезвий инструмента. Различают следующие виды износа: 1 Износ по задней поверхности инструмента. 2 Износ по передней поверхности инструмента.
45878. Критерии оптимизации режима резания при точении. Выбор инструментального материала для резцов 108.19 KB
  Критерии оптимизации режима резания при точении. Основной целью оптимизации является установление таких числовых значений элементов режима резания глубины резания подачи и скорости которые позволяют наиболее производительно с наименьшими затратами осуществлять механическую обработку детали и надежно обеспечить заданное качество обработки. Определить глубину резанияt: t = Dd 2 мм. При черновой обработке необходимо стремиться работать с максимально возможной в данных условиях глубиной резания равной всему припуску или большей части...
45879. Смазочно-охлаждающие технологические среды: назначение, требования, состав, методы отчистки и способы подачи 17.26 KB
  Способы подачи СОЖ: Полить струей жидкости на переднюю поверхность или через насадку с отверстием со стороны задней поверхности. Высоконапорная подача 152 МПа расход СОЖ уменьшается примерно в 20 раз. Функциональные свойства 1Под смазочным действием понимают способность СОЖ образовывать на контактных поверхностях инструмента на стружке и детали прочные пленки полностью или частично предотвращающие соприкосновение передней поверхности со стружкой и задних поверхностей с поверхностью резания. 2Охлаждающее дейстте СОЖ заключается в...
45880. Ультразвуковое резание. Резание с нагревом заготовки 15.43 KB
  Функции: непрерывно падают абразив в рабочий зазор и выносят оттуда частицы снятого металла; охлаждают инструмент в зоне резания. Механическая обработка с ультразвуковыми колебаниями является разновидностью резания с вибрациями. Позволяет ликвидировать нарост уменьшить объем зоны опережающей деформации и усадки стружки уменьшить силу резания. В отношении стойкости инструмента удовлетворяют результаты полученные только для быстрорежущего инструмента на низких режимах резания.
45881. Виды инструментальных материалов и ихприменяемость 16.07 KB
  Инструментальные стали. Стали применяют достаточно широко для изготовления корпусной и крепежноприсоединителыюй частей режущих инструментов а во многих случаях и их режущей части. Если инструмент работает при низких скоростях резания и не нагревается свыше 200220 С то его можно изготовлять из углеродистой инструментальной стали марок У7А У8А У10А У13А и др. Однако и в этом случае ввиду высокой критической скорости закалки эти стали прокаливаются на небольшую глубину и сердцевина инструмента остается вязкой.
45882. Виды токарных резцов. Особенность их применения. Способы соединения режущей пластины с державкой. Какие факторы определяют выбор резцов для токарных работ 50.15 KB
  В качестве режущего инструмента при точении используют резцы.Виды токарных резцов а проходные: 1 прямой 2 отогнутый 3 упорный; б подрезной; в канавочные: 1 для наружных канавок 2 для внутренних; г отрезной; д расточные: 1 для сквозных отверстий 2 для глухих; е резьбовые: 1 для наружных резьб 2 для внутренних; ж фасонный Проходные прямые резцы используются для их рекомендуется назначать для обтачивания гладких открытых цилиндрических поверхностей без уступов и ступеней. Проходные упорные резцы имеют угол в...
45883. Виды фрез, и их применяемость. Как базируется фреза на станке. В чем особенности конструкции черновых, чистовых и шпоночных фрез 251.16 KB
  Цилиндрические фрезы Базовые поверхности внутренний диаметр и торцыприменяются для фрезерования открытых поверхностей. Эти фрезы могут быть с прямыми и винтовыми фрезами. Фрезы с винтовыми зубьями работают плавно они широко применяются на производстве. Фрезы с прямыми зубьями используются лишь для обработке узких плоскостей где преимущества фрез с винтовым зубом не оказывают большого влияния на процесс резания.
45884. Сверла. Назначение, технологические возможности сверления. Дефекты просверленных отверстий и мероприятия по повышению точности отверстий 69.7 KB
  Сверла. Сверла изготавливают из быстрор. Перовые сверла применяются при обр. часть пушечного сверла представ.
45885. Зенкеры. Назначение, технологические возможности зенкерования отверстий. Почему зенкерование обеспечивает более высокую точность обработки в сравнении со сверлением 111.52 KB
  Назначение технологические возможности зенкерования отверстий. Зенкеры применяются для увеличения диаметров цилиних отв. получений отв. Точность отверстий полученных зенкерованием составляет 1112 квалитет шерть R=2.