78907

Научные школы

Доклад

Логика и философия

Научные школы. Внутри науки существуют научные школы функционирующие как организованная и управляемая научная структура объединенная исследовательской программой единым стилем мышления и возглавляемая как правило личностью выдающегося ученого. В науковедении различают классические научные школы и современные. Классические научные школы возникли на базе университетов.

Русский

2015-02-10

22.5 KB

0 чел.

34. Научные школы.

Внутри науки существуют научные школы, функционирующие как организованная и управляемая научная структура, объединенная исследовательской программой, единым стилем мышления и возглавляемая, как правило, личностью выдающегося ученого. В науковедении различают «классические» научные школы и современные. «Классические» научные школы возникли на базе университетов. Расцвет их деятельности пришелся на вторую треть XIX в. В начале XX в. в связи с превращением научно-исследовательских лабораторий и институтов в ведущую форму организации научного труда, им на смену пришли современные («дисциплинарные») научные школы.

В отличие от «классической» научной школы дисциплинарные ослабили функции обучения и были сориентированы на плановые, формирующиеся вне рамок самой школы программы. Когда же научно-исследовательская деятельность переставала «цементироваться» научной позицией и стратегией поиска руководителя, а направлялась лишь поставленной целью, «дисциплинарная» научная школа превращалась в научный коллектив.

Следующим этапом развития институциональных форм науки стало функционирование научных коллективов на междисциплинарной основе, которая обеспечивает появление новых открытий на стыках различных областей знания. Междисциплинарность утверждает установку на синтез знания, в противоположность дисциплинарной установке на аналитичность. Она также содержит в себе механизм «открывания» дисциплин друг для друга, их взаимодополнения и обогащения всего комплекса человеческих знаний.


 

А также другие работы, которые могут Вас заинтересовать

22351. Теоремы Лиувилля и Мореры 98 KB
  По определению аналитическая функция это функция комплексной переменной обладающая производной в каждой точке некоторой области D. Если функция fz аналитична в области D и непрерывна в то она обладает в каждой точке D производными всех порядков причем n я производная представляется формулой 1 где C граница области D. По определению производной и формуле Коши имеем: Но очевидно что при функция равномерна для всех на C стремиться к и следовательно по теореме 2 предыдущей лекции для случая семейства функций...
22352. Представление аналитических функций рядами 464 KB
  Ряды Тейлора. при каких условиях функция представима своим рядом Тейлора с центром в точке : 4 даёт Теорема 1 Коши. Функция представима своим рядом Тейлора 4 в любом открытом круге с центром в точке в котором она аналитична.
22353. Ряды Лорана 269.5 KB
  Поэтому обе формулы можно объединить в одну: 7 Полученное разложение 6 функции fz по положительным и отрицательным степеням za с коэффициентами определяемыми по формулам 7 называется лорановским разложением функции fz с центром в точке a; ряд 2 называется правильной а ряд 4 главной частью этого разложения. и в нашем рассуждении могут быть взяты сколь угодно близкими к r и R а q может сколь угодно мало отличаться от 1 то разложение 6 можно считать справедливым для...
22354. Примеры особых точек 2.06 MB
  Функции имеют в начале координат устранимую особую точку. Функции имеют начале координат существенную особую точку. Проверим справедливость теоремы Сохоцкого для функции . Целые функции.
22355. Бесконечно удаленная точка 682.5 KB
  Пусть функция аналитична в некоторой окрестности бесконечно удаленной точки кроме самой точки . В этом случае функция очевидно ограничена и в некоторой окрестности точки . Пусть функция аналитична в полной поскости. Но тогда функция ограничена во всей плоскости: для всех имеем .
22356. Приложение теории вычетов 797 KB
  Напомним что мероморфной называется функция fz все конечные особые точки которой являются полюсами. в любой ограниченной области такая функция может иметь лишь конечное число полюсов то все ее полюсы можно пронумеровать например в порядке не убывания модулей: Будем обозначать главную часть fz в точке т. Если мероморфная функция fz имеет лишь конечное число полюсов и кроме того является либо правильной регулярной ее точкой либо полюсом то эта функция представляется в виде суммы своих главных частей 3 и...
22357. Обращение степенных рядов 217.5 KB
  Выберем число столь малым чтобы в круге функция обращалась в нуль только в точке . Каждое значение из круга функция принимает в круге только один раз. В самом деле на окружности выполняется неравенство и по теореме Руше функция имеет в круге столько же нулей сколько и функция т. Итак пусть тот круг в котором функция принимает каждое значение ровно один раз а область плоскости ограниченная кривой кривая является простой кривой т.
22358. Аналитическое продолжение 680.5 KB
  Представляет большой интерес вопрос нельзя ли расширить область определения этой функции сохранив регулярность. Функцию регулярную в области содержащей и совпадающую с регулярной в области называют аналитическим продолжением функции на область . Если аналитическое продолжение регулярной функции в данную более широкую область определения возможно то оно возможно лишь единственным образом. В самом деле пусть существуют два аналитических продолжения и функции регулярной в области в одну и туже область .