78917

Кантовские представления о диалектике теоретического и практического разума

Доклад

Логика и философия

Правда на сами эти предпосылки Кант не покушается: более того он увековечивает их как прирожденные свойства разума. Резкий метафизический разрыв теоретического и практического разума опытных и априорных суждений анализа и синтеза общего и единичного целого и части весь комплекс противоречий к которым неизбежно приходит метафизическое мышление Кант выставил перед философией как решающую проблему. Их можно только мыслить как условия возможности и науки и нравственности как гарантии теоретического и...

Русский

2015-02-10

27 KB

1 чел.

46. Кантовские представления о диалектике теорет. и практического разума.

Величайшей заслугой родоначальника немецкой классической философии – Канта – было его стремление и умение подытожить основные принципиальные разногласия предшествующего философского развития, придать им антиномическую остроту выражения, проанализировать и выявить молчаливо и безотчетно принимаемые метафизическим мышлением предпосылки. Правда, на сами эти предпосылки Кант не покушается: более того, он увековечивает их как прирожденные свойства разума. Но – выставив их перед сознанием в обнаженном виде, Кант – хотел он того или не хотел – объективно поставил вопрос об их преодолении.

Принципы рационализма и эмпиризма, непримиримо противостоявшие ранее друг другу в виде борющихся систем, благодаря Канту превратились в антиномии внутри одной, внутри его системы. Резкий метафизический разрыв теоретического и практического разума, опытных и априорных суждений, анализа и синтеза, общего и единичного, целого и части – весь комплекс противоречий, к которым неизбежно приходит метафизическое мышление, Кант выставил перед философией как решающую проблему.

Согласно Канту, ни теоретический, ни практический идеал невозможно задать в виде образа — в виде чувственно созерцаемой картины «совершенного» и «завершенного» состояния, ибо в науке это было бы претензией на изображение «вещи в себе», а в «практическом разуме» — на изображение бога. Но ни «вещь в себе», ни бога чувственно представить себе нельзя. Их можно только мыслить как условия возможности и науки, и нравственности, как гарантии «теоретического» и «практического» разума, всегда остающиеся «по ту сторону» рассудка и опыта, как необходимые априорные допущения, делающие возможными и опыт, и рассудок. Иными словами, в теоретическом разуме (в науке) идеал может выступать только в виде постулата «запрета противоречия», а в «практическом разуме» — в виде категорического императива.

Законы теоретического и практического разума находятся в противоречии друг с другом и тем самым нарушают единство разума. Но этого, по Канту, быть не должно и антиномию разума следует разрешить. Природа и свобода, мир чувственный и интеллигибельный не координированы между собой как две равноправные области. Интеллигибельное есть последняя основа эмпирического. Спекулятивный разум не может ни понять эту связь, ни отрицать ее; он может только отрицать ее познаваемость, но признает возможность ее мыслимости, значит он не может препятствовать требованию практического разума, который говорит о примате интеллигибельной сферы. Теоретический разум должен, по Канту, повиноваться велению практического. Подобно тому, как интеллигибельное относится к эмпирическому, а свобода - к природе, так и практический разум относится к спекулятивному. Это соотношение, принцип зависимости спекулятивного (теоретического) разума от практического Кант назвал "приматом чистого практического разума". Тем самым практический разум становится более авторитетной интеллектуальной инстанцией; опора на моральный закон позволила ему постичь "объективную реальность" того, что было непознаваемо для теоретического разума вследствие ограниченности возможностей последнего. Бог был для него не более чем трансцендентальной идеей, о которой не могло быть какого-либо знания, что же касается практического разума, то он придал определенный смысл "теологическому понятию первосущности как главному принципу высшего блага в умопостигаемом мире", показав, что высшее благо, делающее добродетельную личность счастливой, осуществляется в потустороннем, умопостигаемом мире. Высшее благо, как и надежда на счастье, начинается, с точки зрения Канта, только при допущении бессмертия души и бытия Бога как высшей причины всего сущего, обеспечивающей полное соответствие между счастьем и нравственностью.


 

А также другие работы, которые могут Вас заинтересовать

54194. АКТИВІЗАЦІЯ ПІЗНАВАЛЬНОЇ ДІЯЛЬНОСТІ УЧНІВ НА УРОКАХ МАТЕМАТИКИ З ВИКОРИСТАННЯМ ІКТ 239 KB
  Активізація пізнавальної діяльності учня без розвитку його пізнавального інтересу не тільки важка, але й практично неможлива. От чому в процесі навчання необхідно систематично збуджувати, розвивати і укріплювати пізнавальний інтерес учнів і як важливий мотив навчання, і як стійку рису особистості, і як могутній засіб виховання.
54195. Позакласний захід в 2 класі «Математичний ранок» 196.5 KB
  Мета: познайомити учнів з історією чисел, їх написанням; вчити розв’язувати завдання з логічним навантаженням, застосовуючи знання з математики, природознавства; розвивати кмітливість, спостережливість, логічне мислення учнів; виховувати інтерес до математики.
54196. НТЕЛЛЕКТУАЛЬНО-РАЗВЛЕКАТЕЛЬНАЯ ИГРА ДЛЯ УЧАЩИХСЯ 5-7 КЛАССОВ «ФАН КЛУБ МАТЕМАТИКИ» 105.5 KB
  Развитие умений формулировать и излагать мысль, моделировать ситуацию. Развитие навыков работы в группе. Воспитание стойкости, находчивости, любознательности.
54197. Клуб веселых математиков 309.5 KB
  Сегодня мы открываем клуб веселых математиков. В соревнованиях участвуют два класса - две команды. Это лучшие математики, которые не унывают, быстро считают, хорошо решают задачи, любознательны, живут весело и дружно.
54198. Сценарій позакласного заходу: «Математика – зліва, математика - справа» 134 KB
  Бажаю вам дорогі друзі шановні академіки успіхів у вивченні цариці наук Математики 1 учень вбігає Хлопці я чув що в школі буде тиждень математики Уявляєте весь тиждень сама лиш тільки математика 2 учень з місця Та не може такого бути 3 учень вбігає У мене для вас ось така новина Всіх вчителів направили на курси залишилися лише математики. 1 учень Ну. Учень Як зібрався математику вивчати То до класу на уроки вирушай. Виконується цікавий номер Учень Сорокап'ятирічний чоловік покохав п'ятнадцятирічну дівчину.
54200. Конкурс знавців математики «Мадонна Математика» 714 KB
  Сьогодні будемо ми друзі Царицю всіх наук вітати. Не всі ви в майбутньому станете математиками але математика потрібна і в науці і в техніці і в повсякденному житті. Ще в давні часи математику називали царицею наук ключем до всіх наук. Одне слово одне слово Математику Чом по курсу спішать на морях кораблі Хуртовини й тумани долають в імлі Капітани не ледачі Не лякають їх задачі Одне слово одне слово Математики Хочеш лікарем стати хочеш в космос літати Перш за все треба друже математику знати Всі повинні шанувати Ікси...
54201. Математична конференція «Золотий переріз – душа гармонії» 502 KB
  І називається вона Золотий переріз душа гармонії. Теорему Піфагора знає кожен школяр а про золотий переріз далеко не всі. Про золотий переріз знали ще в Давньому Єгипті й Вавилоні в Індії та Китаї.
54202. Математичний гурток для творчих дітей 623 KB
  Для пробудження в учнів інтересу до математики дуже важлива позакласна робота та особливо гурткова. Декілька років я керую гуртком «Цікава математика». Основним своїм завданням як керівника гуртка вважаю саме пробудження інтересу до свого предмету. До роботи в гуртку я залучаю в першу чергу творчих дітей, які не дуже дружать з математикою, бо не бачать в ній можливостей для реалізації своїх творчих сил.